解二元一次方程组1精品教育

上传人:工**** 文档编号:589078310 上传时间:2024-09-09 格式:PPT 页数:12 大小:128.04KB
返回 下载 相关 举报
解二元一次方程组1精品教育_第1页
第1页 / 共12页
解二元一次方程组1精品教育_第2页
第2页 / 共12页
解二元一次方程组1精品教育_第3页
第3页 / 共12页
解二元一次方程组1精品教育_第4页
第4页 / 共12页
解二元一次方程组1精品教育_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《解二元一次方程组1精品教育》由会员分享,可在线阅读,更多相关《解二元一次方程组1精品教育(12页珍藏版)》请在金锄头文库上搜索。

1、第二节 二元一次方程组的解法 第七章 二元一次方程组用代入法解二元一次方程组用代入法解二元一次方程组 鲁晓琴鲁晓琴 兰州五十中兰州五十中第一课时第一课时回顾与思考 昨天昨天,我们我们8个个人去红山公园玩人去红山公园玩,买门票花了买门票花了34元元. 每张成人票每张成人票5元元,每张儿童票每张儿童票3元元.他们到底去了几他们到底去了几个成人、几个儿个成人、几个儿童呢童呢?还记得下面这一问题吗还记得下面这一问题吗? ?设他们中有设他们中有x个成人,个成人,y个儿童个儿童. . 我们列出的二元一次方程组为我们列出的二元一次方程组为: :我们怎么获得这个二元一次方程组的解呢我们怎么获得这个二元一次方程

2、组的解呢? ? 想想以前学习过的一元一次方程,能不想想以前学习过的一元一次方程,能不能解决这一问题能解决这一问题? ?解:设去了解:设去了x个成人,则去个成人,则去了了(8(8x) )个儿童,根据题个儿童,根据题意,得:意,得: 解得:解得:x=5.=5.将将x=5=5代入代入8 8x=8=85=3.5=3.答:去了答:去了5 5个成人,个成人, 3 3个个儿童儿童. . 用一元一次方程求解用一元一次方程求解用二元一次方程组求解用二元一次方程组求解解:设去了解:设去了x个成人,去了个成人,去了y个儿童,根据题意,得:个儿童,根据题意,得: 观察观察: :列二元一次列二元一次方程组和列一元一次方

3、程组和列一元一次方程设未知数有何不方程设未知数有何不同?列出的方程和方同?列出的方程和方程组又有何联系?对程组又有何联系?对你解二元一次方程组你解二元一次方程组有何启示?有何启示? 解:设去了解:设去了x个成人,去了个成人,去了y个儿童,根据题意,得:个儿童,根据题意,得: 用二元一次方程组求解用二元一次方程组求解由由得:得:y = 8= 8x. . 将将代入代入得:得:5x+3(8x)=34.解得:解得:x = 5.把把x = 5代入代入得:得:y = 3.所以原方程所以原方程组的解的解为:前面解方程组的方法取个什么名字好前面解方程组的方法取个什么名字好? ? 解方程组的解方程组的基本思路是

4、什么?基本思路是什么?解方程组的解方程组的主要步骤有哪些?主要步骤有哪些? 思考思考 解二元一次方程组的基本思路是消解二元一次方程组的基本思路是消元,把元,把“二元二元”变为变为“一元一元”. . 前面解方程组是将其中一个方程的某个未知前面解方程组是将其中一个方程的某个未知数用含另一个未知数的代数式表示出来,并代数用含另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程元一次方程组为一元一次方程. .这种解方程组的这种解方程组的方法称为方法称为代入消元法代入消元法,简称,简称代入法代入法. . 用代入消元法

5、解二元一次方程组时,尽量选取一个用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是未知数的系数的绝对值是1 1的方程进行变形;若未知数的的方程进行变形;若未知数的系数的绝对值都不是系数的绝对值都不是1 1,则选取系数的绝对值较小的方程,则选取系数的绝对值较小的方程变形变形. . 解二元一次方程组的步骤:解二元一次方程组的步骤: 第一步:在已知方程组的两个方程中选择一个适第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来数式表示出来. . 第二步:把此代数式代入没有变形的另一个方程

6、第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程中,可得一个一元一次方程. . 第三步:解这个一元一次方程,得到一个未知数第三步:解这个一元一次方程,得到一个未知数的值的值. . 第四步:回代求出另一个未知数的值第四步:回代求出另一个未知数的值. . 第五步:把方程组的解表示出来第五步:把方程组的解表示出来. . 第六步:检验第六步:检验( (口算或在草稿纸上进行笔算口算或在草稿纸上进行笔算),),即把即把求得的解代入每一个方程看是否成立求得的解代入每一个方程看是否成立. .例例 解下列方程组:解下列方程组: 1.1.教材随堂练习教材随堂练习2.2.补充练习:用代入消元法解下列方程组补充练习:用代入消元法解下列方程组 1 1. .二元一次方程组的一种解法二元一次方程组的一种解法: : 代入消元法代入消元法. .基本思路基本思路: : 消元消元 化化“二元二元”为为“一元一元”. .2 2. .用代入法解二元一次方程组的步骤用代入法解二元一次方程组的步骤. . 这一节课我们一起学习了哪些知识这一节课我们一起学习了哪些知识和思想方法?对这些内容你有什么体和思想方法?对这些内容你有什么体会?请与你的同伴交流会?请与你的同伴交流1.1.课本习题课本习题7.27.22.2.预习课本下一节内容预习课本下一节内容

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号