云南省峨山彝族自治县高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件2 新人教A版必修1

上传人:大米 文档编号:588986708 上传时间:2024-09-09 格式:PPT 页数:19 大小:1.13MB
返回 下载 相关 举报
云南省峨山彝族自治县高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件2 新人教A版必修1_第1页
第1页 / 共19页
云南省峨山彝族自治县高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件2 新人教A版必修1_第2页
第2页 / 共19页
云南省峨山彝族自治县高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件2 新人教A版必修1_第3页
第3页 / 共19页
云南省峨山彝族自治县高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件2 新人教A版必修1_第4页
第4页 / 共19页
云南省峨山彝族自治县高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件2 新人教A版必修1_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《云南省峨山彝族自治县高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件2 新人教A版必修1》由会员分享,可在线阅读,更多相关《云南省峨山彝族自治县高中数学 第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点课件2 新人教A版必修1(19页珍藏版)》请在金锄头文库上搜索。

1、3.1.1方程的根与函数的零点方程的根与函数的零点等价关系等价关系判断函数零点或相判断函数零点或相应方程的根的存在性应方程的根的存在性例题分析例题分析课堂练习课堂练习 小结小结布置作业布置作业 思考:一元二次方程ax2+bx+c=0(a0)的根与二次函数y=ax2+bx+c(a0)的图象有什么关系? 方程方程x22x+1=0 x22x+3=0y= x22x3y= x22x+1函数函数函函数数的的图图象象方程的实数根方程的实数根x1=1,x2=3x1=x2=1无实数根无实数根函数的图象函数的图象与与x轴的交点轴的交点(1,0)、(3,0)(1,0)无交点无交点x22x3=0xy013211212

2、34.xy0132112543.yx012112y= x22x+3方程方程ax2 +bx+c=0(a0)的根的根函数函数y= ax2 +bx+c(a0)的图象的图象判别式判别式 =b24ac0=00函数的图象函数的图象与与 x 轴的交点轴的交点有两个相等的有两个相等的实数根实数根x1 = x2没有实数根没有实数根xyx1x20xy0x1xy0(x1,0) , (x2,0)(x1,0)没有交点没有交点两个不相等两个不相等的实数根的实数根x1 、x2 对于函数对于函数y=f(x),我们把使我们把使f(x)=0的实数的实数x叫做函数叫做函数y=f(x)的零点的零点.方程方程f(x)=0有实数根有实数

3、根函数函数y=f(x)的图象与的图象与x轴有交点轴有交点函数函数y=f(x)有零点有零点函数零点的定义:函数零点的定义:函数零点的定义:函数零点的定义:等价关系等价关系等价关系等价关系观察二次函数观察二次函数f(x)=x22x3的图象的图象: 2,1 f(2)0 f(1)0 f(2)f(1)0(2,1)x1 x22x30的一个根的一个根 2,4 f(2)0 f(2)f(4)0(2,4)x3 x22x30的另一个根的另一个根.xy0132112123424观察对数函数观察对数函数f(x)=lgx的图象的图象:0.5 , 1.5 f(0.5)0 f(0.5)f(1.5)0(0.5 , 1.5) x

4、1 lgx=0的一个根的一个根.xy0121. . . . . . . . . . 如果函数如果函数y=f(x)在区间在区间a,b上的图象是连续上的图象是连续不断的一条曲线不断的一条曲线,并且有,并且有f(a)f(b)0,那么,函,那么,函数数y=f(x)在区间在区间(a,b) 内有零点,即存在内有零点,即存在c(a,b),使得,使得f(c)=0,这个,这个c也就是方程也就是方程f(x)=0的根的根. 注注注注: : : :只要满足上述两个条件只要满足上述两个条件只要满足上述两个条件只要满足上述两个条件, , , ,就能判断函数在指定就能判断函数在指定就能判断函数在指定就能判断函数在指定区间内

5、存在零点区间内存在零点区间内存在零点区间内存在零点. . . .x xy y0 0a ab b. . . . . . .x xy y0 0a ab bx xy y0 0a ab b. . . . . . . . . . . . .由表由表3-1和图和图3.13可知可知f(2)0, 即即f(2)f(3)0,f(1.5)=2.8750,所以所以f(x)= x33x+5在区间在区间(1, 1.5)上有零点上有零点.又因为又因为f(x)是是(,)上的减函数,所以在区间上的减函数,所以在区间(1, 1.5)上有上有且只有一个零点且只有一个零点.xy01321125432(1) f(x)= x33x+5.

6、 . . . . . . . . . . . . . . .2(2)2(2)2(2)2(2)解:解:解:解:作出函数的图象,如下:作出函数的图象,如下:. . . . . . . . . . . . . 因为因为f(3)30,所以所以f(x)= 2x ln(x2)3在区间在区间(3,4)上有零点上有零点.又因为又因为f(x) =2x ln(x2)3是是(2,)上的增函数,)上的增函数,所以在区间所以在区间(3,4)上有且只有一个零点上有且只有一个零点.xy01321125-3-242(2) f(x)=2x ln(x2)3 2(3)2(3)2(3)2(3)解:解:解:解:作出函数的图象,作出函数

7、的图象,如下:如下: . . . . . . . . . . . . . 因为因为f(0)3.630,所以所以f(x)= ex1+4x4在区间在区间(0,1)上有零点上有零点.又因又因为为f(x) = ex1+4x4是是( ,)上的增函数,所以在)上的增函数,所以在区间区间(0,1)上有且只有一个零上有且只有一个零点点.2(3) f(x)=ex1+4x4xy01321121234242(4)2(4)2(4)2(4)解:解:解:解:作出函数的图象,如下:作出函数的图象,如下:x080155y24012043604020432 因为因为f(4)40, f(2)20,f(2)700,所以所以f(x)= 3(x+2)(x 3)(x+4)+x 在区间在区间(4,3 )、 (3,2,)、 (2,3 )上各有上各有一个零点一个零点.2(4) f(x)=3(x+2)(x3)(x+4)+x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .小结与思考函数零点的定义函数零点的定义等价关系等价关系等价关系等价关系函数的零点或相应方程的函数的零点或相应方程的根的存在性以及个数的判断根的存在性以及个数的判断布置作业:布置作业: 习题习题3.1 第第2题题

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号