《高考数学一轮复习 21函数的概念及其表示课件 理》由会员分享,可在线阅读,更多相关《高考数学一轮复习 21函数的概念及其表示课件 理(31页珍藏版)》请在金锄头文库上搜索。
1、基础诊断基础诊断考点突破考点突破课堂总结课堂总结第第1讲讲函数的概念及其表示函数的概念及其表示基础诊断基础诊断考点突破考点突破课堂总结课堂总结考试要求考试要求1.映射、函数的概念,求简单函数的定义域和值域,B级要求;2.选择恰当的方法(如图象法、列表法、解析法)表示函数,B级要求;3.简单的分段函数及应用,A级要求基础诊断基础诊断考点突破考点突破课堂总结课堂总结知 识 梳 理1函数的基本概念(1)函数的定义设A,B是两个非空的 ,如果按某种对应法则f,对于集 合A中的每一个元素x,在集合B中都有 元素y和它 对应,那么这样的对应叫做从A到B的一个函数,记 作 .唯一 yf(x),xA 数集 基
2、础诊断基础诊断考点突破考点突破课堂总结课堂总结(2)函数的定义域、值域在函数yf(x),xA中,其中所有的输入值x组成的集合A称为函数yf(x)的 ;将所有输出值y组成的集合叫做函数的 (3)函数的三要素: 、 和 (4)函数的表示法表示函数的常用方法有 、 和 定义域 值域 定义域 对应法则 值域 解析法 图象法 列表法 基础诊断基础诊断考点突破考点突破课堂总结课堂总结(5)分段函数在函数的定义域内,对于自变量x的不同取值区间,有着不 同的 ,这种函数称为分段函数分段函数是一个函数,分段函数的定义域是各段定义域 的 ,值域是各段值域的 2映射的概念设A,B是两个非空集合,如果按某种对应法则f
3、,对于A中的 每一个元素,在B中都有 的元素与之对应,那么这样 的单值对应叫做从集合A到集合B的一个 对应法则 并集 并集 唯一 映射 基础诊断基础诊断考点突破考点突破课堂总结课堂总结3函数定义域的求法f(x)0 f(x)0 基础诊断基础诊断考点突破考点突破课堂总结课堂总结诊 断 自 测1思考辨析(在括号内打“”或“”)(1)f(x)与g(x)x是同一个函数( )(2)若两个函数的定义域与值域相同,则这两个函数相等( )(3)函数是特殊的映射( )(4)分段函数是由两个或几个函数组成的( )基础诊断基础诊断考点突破考点突破课堂总结课堂总结2给出下列函数:f(x)|x|;f(x)x|x|;f(x
4、)x1;f(x)x.其中满足f(2x)2f(x)的是_(填序号)解析将f(2x)表示出来,看与2f(x)是否相等对于,f(2x)|2x|2|x|2f(x);对于,f(2x)2x|2x|2(x|x|)2f(x);对于,f(2x)2x12f(x);对于,f(2x)2x2f(x),故只有不满足f(2x)2f(x)答案基础诊断基础诊断考点突破考点突破课堂总结课堂总结答案(2,) 基础诊断基础诊断考点突破考点突破课堂总结课堂总结4已知f(2x1)3x4,f(a)4,则a_.基础诊断基础诊断考点突破考点突破课堂总结课堂总结解析g()0,f(g()f(0)0.答案0基础诊断基础诊断考点突破考点突破课堂总结课
5、堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结答案(1)(3,0(2)(1,1)(1,) 基础诊断基础诊断考点突破考点突破课堂总结课堂总结规律方法(1)给出解析式的函数的定义域是使解析式中各个部分都有意义的自变量的取值集合 ,在求解时,要把各个部分自变量的限制条件列成一个不等式(组),这个不等式(组)的解集就是这个函数的定义域,函数的定义域要写成集合或者区间的形式(2)对于实际问题中求得的函数解析式,在确定定义域时,除了要考虑函数解析式有意义外,还要使实际问题有意义基础诊断基础诊断考点突破考点突破课堂总结课堂总结答案(1)(2,3)(3,)(2)(0,1 基础诊断基础诊断考点突破考点突
6、破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结答案(1)3(2)(,8 基础诊断基础诊断考点突破考点突破课堂总结课堂总结规律方法(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a)的形式时,应从内到外依次求值(2)求某条件下自变量的值,
7、先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围基础诊断基础诊断考点突破考点突破课堂总结课堂总结基础诊断基础诊断考点突破考点突破课堂总结课堂总结微型专题抽象函数的定义域问题抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说具有一定难度,特别是求其定义域时,许多同学解答起来总感觉棘手,在高考中一般不会单独考查,但从提升能力方面考虑,还应有所涉及基础诊断基础诊断考点突破考点突破课堂总结课堂总结点拨先利用换元法求出函数f(x1)的定义域,则函数g(x)的定义域为f(x1)的定义域与不等式x10的解集的交集基
8、础诊断基础诊断考点突破考点突破课堂总结课堂总结答案0,1)(1,2 014 基础诊断基础诊断考点突破考点突破课堂总结课堂总结点评函数的定义域是函数解析式中自变量的取值范围,即f(x)与f(g(x)的定义域都是自变量x的取值范围,常见有如下两种类型:(1)已知函数f(x)的定义域为D,则函数f(g(x)的定义域就是不等式g(x)D的解集;(2)已知函数f(g(x)的定义域为D,则函数f(x)的定义域就是函数yg(x)(xD)的值域.基础诊断基础诊断考点突破考点突破课堂总结课堂总结思想方法1在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应法则是否相同2函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础因此,我们一定要树立函数定义域优先意识3函数解析式的几种常用求法:待定系数法、换元法、配凑法、方程法基础诊断基础诊断考点突破考点突破课堂总结课堂总结