正交旋转二次回归设计与RsReg:第七节响应面分析•当试验中考察的指标宜于用多元二次回归方程来拟合因素与指标的函数关系,就可以分析回归方程所反应的曲面形状,如果得到的曲面是凸面(像山丘)或凹面(像山谷)这类简单曲面,那么预测的最佳指标值(极大值或极小值)可以从所估计的曲面上获得;如果曲面很复杂,或者预测的最佳点远离所考察因素的试验范围,那么可以通过岭嵴分析来确定重新进行试验的方向. 这就是应用较广,颇有实用价值的响应面分析法(Response Surface Analysis).第六章 回归分析:第六章 回归分析:第六章 回归分析:第六章 回归分析:如果稳定点不是理想点就要进一步作岭嵴分析,请看示意图和例子演示第六章 回归分析:RSREG 的SAS过程二次型回归:•响应面回归分析的简单SAS程序如下:•Data E62; Input x1-x3 y1 y2 ; Cards; • 数据(略)• ;•Proc RsReg data=E62 ; /*响应面分析*/• Model y1 y2=x1-x3; • Run;第六章 回归分析:•响应面分析SAS简单程序如下:•data rubber; input y x1 x2 ; cards; 数(略) •;•proc sort; by x1 x2 ; /*对自变量x1 x2 进行sort由小到大排序*/•proc rsreg;•model f=t d /lackfit;/*选项lackfit要求对回归模型执行不适合度检定(lack-of-fit test), 预先应先对自变量进行sort由小到大排序*/•run;第六章 回归分析:PROC RSREG < options > ; ((options: data=SASdataset,指明回归所用数据集指明回归所用数据集 Out=SASdataset,指明回归分析所得输出的数据集)指明回归分析所得输出的数据集)MODEL responses= independents < / options > ; 指定模型,指定模型, 响应变量响应变量=自变量自变量/选项选项(options: lackfif,要求回归模型运行不适合检定.若选用此项,则须先将数据集内的自变量由小到大排序。
Nooptimal, 停止寻求二项式反应面分析所需的临界值 Covar=n, 指定前n个变量为共变量,所以它们只以一次式类型进入回归模型里 L95,输出95%置信区间的下界 U95,输出95%置信区间的上界二次型回归:•RIDGE < options > ; 脊岭分析脊岭分析• ((options: CENTER=uncoded-factor-values 给出脊岭分析的初始值给出脊岭分析的初始值• MAX,输出脊岭分析的最大响应值输出脊岭分析的最大响应值• MIN,输出脊岭分析的最小响应值输出脊岭分析的最小响应值• RADIUS=coded-radii,脊岭分析的距离脊岭分析的距离•例如,例如,radius= m to n by j))•WEIGHT variable ; (给指定的变量加以权重给指定的变量加以权重•ID variables ; 指定名称变量。
指定名称变量•BY variables ; 指定要独立分析的变量,此选项须要数据指定要独立分析的变量,此选项须要数据集以由小到大排序集以由小到大排序二次型回归:二次型回归:程序:data a;input n x1-x2 y;cards;1 -1 -1 76.5 2 -1 1 77.6 3 1 -1 78.04 1 1 79.5 5 0 0 80.3 6 0 0 80.07 0 0 79.7 8 0 0 79.8 9 1.414 0 78.4 10 -1.414 0 75.611 0 1.414 78.5 12 0 -1.414 77.0;proc rsreg data=a;model y=x1 x2;ridge max;id n;run;二次型回归:结果1: The RSREG Procedure Coding Coefficients for the Independent Variables Factor Subtracted off Divided by x1 0 1.414000 x2 0 1.414000 Response Surface for Variable y响应变量的均值 Response Mean 78.408333 Root MSE 0.372059 R-Square 0.9671 变异系数Coefficient of Variation 0.4745二次型回归:Type I Sum Regression DF of Squares R-Square F Value Pr > F线性项 Linear 2 9.557151 0.3785 34.52 0.0005方项 Quadratic 2 14.821449 0.5870 53.53 0.0001 交叉项Crossproduct 1 0.040000 0.0016 0.29 0.6102 Total Model 5 24.418600 0.9671 35.28 0.0002 Sum of Residual DF Squares Mean Square Total Error 6 0.830566 0.138428〔总均方误差参数估计与检验参数估计与检验二次型回归: Parameter Estimate Standard from Coded Parameter DF Estimate Error t Value Pr > |t| Data Intercept 1 79.949921 0.186029 429.77 <.0001 79.949921 x1 1 0.920199 0.131553 6.99 0.0004 1.300935 x2 1 0.590214 0.131553 4.49 0.0042 0.834563 x1*x1 1 -1.343922 0.147100 -9.14 <.0001 -2.687032 x2*x1 1 0.100000 0.186029 0.54 0.6102 0.201940 x2*x2 1 -0.968808 0.147100 -6.59 0.0006 -1.937032因子检验 Sum of Factor DF Squares Mean Square F Value Pr > F x1 3 18.365068 6.121689 44.22 0.0002 x2 3 8.830836 2.943612 21.26 0.0013回归参数估计与检验回归参数估计与检验二次型回归: Eigenvectors Eigenvalues x1 x2 -1.923935 0.129896 0.991528 -2.700128 0.991528 -0.129896 Stationary point is a maximum. The RSREG Procedure岭嵴分析 Estimated Ridge of Maximum Response for Variable y编码半径 Coded Estimated Standard Uncoded Factor Values Radius Response Error x1 x2 0.0 79.949921 0.186029 0 0 0.1 80.080899 0.185120 0.115041 0.082216 0.2 80.165492 0.182651 0.221499 0.175823 0.3 80.204861 0.179425 0.318826 0.279814 0.4 80.201907 0.176874 0.407040 0.392711 0.5 80.152215 0.177092 0.486648 0.512858 0.6 80.062027 0.182642 0.558466 0.638669 0.7 79.930241 0.196001 0.623443 0.768780 0.8 79.757426 0.218826 0.682527 0.902092 0.9 79.544034 0.251637 0.736588 1.037762 1.0 79.290430 0.294090 0.786390 1.175154典型分析典型分析二次型回归:例例2 1971年年John组织作一试验要求达某一种难闻的化学气味组织作一试验要求达某一种难闻的化学气味最小,设表示最小,设表示Odor一种难闻的化学气味,一种难闻的化学气味,T设表示温度设表示温度〔〔Temperature)),R设表示气体比〔设表示气体比〔Gas-Liquid Ratio)),H设表示容器高度〔设表示容器高度〔Packing Height)),数据如数据如下:下:编编号号温度温度T T气体比气体比R R容器高度容器高度H H化学气味化学气味OdorOdor1 140400.30.34 466662 21201200.30.34 439393 340400.70.74 443434 41201200.70.74 449495 540400.50.52 258586 61201200.50.52 217177 740400.50.56 6-5-58 81201200.50.56 6-40-409 980800.30.32 26565101080800.70.72 27 7111180800.30.36 64343121280800.70.76 6-22-22131380800.50.54 4-31-31141480800.50.54 4-35-35151580800.50.54 4-26-26:SAS程序:程序:title 'Response Surface with a Simple Optimum';data smell; input Odor T R H ; label T = "Temperature" R = "Gas-Liquid Ratio" H = "Packing Height"; datalines; 66 40 .3 4 39 120 .3 4 43 40 .7 4 49 120 .7 4 58 40 .5 2 17 120 .5 2 -5 40 .5 6 -40 120 .5 6 65 80 .3 2 7 80 .7 2 43 80 .3 6 -22 80 .7 6 -31 80 .5 4 -35 80 .5 4 -26 80 .5 4 proc rsreg data=smell; model Odor = T R H / lackfit; run; 二次型回归:data grid; do; Odor =.; H= 7.541; do T = 20 to 140 by 5; do R = .1 to .9 by .05; output; end; end; end; data grid; set smell grid; run; proc rsreg data=grid out=predict noprint; model Odor = T R H / predict; run; data plot; set predict; if H = 7.541; proc g3d data=plot; plot T*R=Odor / rotate=38 tilt=75 xticknum=3 yticknum=3 zmax=300 zmin=-60 ctop=red cbottom=blue caxis=black; run; title; :结果输出结果输出 The RSREG Procedure Coding Coefficients for the Independent Variables Factor Subtracted off Divided by T 80.000000 40.000000 R 0.500000 0.200000 H 4.000000 2.000000 Response Surface for Variable Odor Response Mean 15.200000 Root MSE 22.478508 R-Square 0.8820 Coefficient of Variation 147.8849 二次型回归: Type I Sum Regression DF of Squares R-Square F Value Pr > F Linear 3 7143.25 0.3337 4.71 0.0641 Quadratic 3 11445 0.5346 7.55 0.0264 Crossproduct 3 293.50 0.0137 0.19 0.8965 Total Model 9 18882 0.8820 4.15 0.0657 Sum of Residual DF Squares Mean Square F Value Pr > F Lack of Fit 3 2485.750000 828.583333 40.75 0.0240 Pure Error 2 40.666667 20.333333 Total Error 5 2526.416667 505.283333 二次型回归: The RSREG Procedure Parameter Estimate Standard from Coded Parameter DF Estimate Error t Value Pr > |t| Data Intercept 1 568.958333 134.609816 4.23 0.0083 -30.666667 T 1 -4.102083 1.489024 -2.75 0.0401 -12.125000 R 1 -1345.833333 335.220685 -4.01 0.0102 -17.000000 H 1 -22.166667 29.780489 -0.74 0.4902 -21.375000 T*T 1 0.020192 0.007311 2.74 0.0407 32.083333 R*T 1 1.031250 1.404907 0.73 0.4959 8.250000 R*R 1 1195.833333 292.454665 4.09 0.0095 47.833333 H*T 1 0.018750 0.140491 0.13 0.8990 1.500000 H*R 1 -4.375000 28.098135 -0.16 0.8824 -1.750000 H*H 1 1.520833 2.924547 0.52 0.6252 6.083333 二次型回归:Sum of Factor DF Squares Mean Square F Value Pr > F Label T 4 5258.016026 1314.504006 2.60 0.1613 Temperature R 4 11045 2761.150641 5.46 0.0454 Gas-Liquid Ratio H 4 3813.016026 953.254006 1.89 0.2510 Packing Height 二次型回归: The RSREG Procedure (响应曲面点典型分析〕Canonical Analysis of Response Surface Based on Coded Data Critical Value〔稳定点) Factor (编码) Coded (非编码〕Uncoded Label〔注释) T 0.121913 84.876502 Temperature R 0.201975 0.539915 Gas-Liquid Ratio H 1.770525 7.541050 Packing Height (稳定点最小预测值〕Predicted value at stationary point: -52.024631 二次型回归:Eigenvectors Eigenvalues T R H (特征值) (特征向量) 48.858807 0.238091 0.971116 -0.015690 31.103461 0.970696 -0.237384 0.037399 6.037732 -0.032594 0.024135 0.999177 特征值全大于0,故曲面有最小值 Stationary point is a minimum. 二次型回归:第六章 回归分析:第六章 回归分析:可以作二个因素的响应面图(固定其它因素),E62的响应面图如下(作图程序参见SAS操作入门):第六章 回归分析:一.正交、旋转回归设计步骤(一).确定试验的因素及各因素的试验水平的上下限A、B、C.…..(二〕对试验水平的上下限编码因素试验的下限————》-1因素试验的上限————》 1,例 设因素A分为A1,A2两水平[A1,A2];中点: Z=(A1+A2)/2半间隔:H=(A2-A1)/2编码值:Xi=(Ai-Z)/H 编码值在[-1,1]上.A1=225 ,A2=375 Z=(225+375)/2=300 H=(375-225)/2=75X2=(375-300)/75=1 X1=(225-300)/75=-1X0=(300-300)/75=0 对 1.682=(At-300)/75 可求得 At=426:(三〕设计试验1.一般p个变量的组合设计由下列N个点:,, ——2水平(+1和-1〕的全因子试验的试验点个数 -----分布在p个坐标轴上的星号点,它们与中心点的距离 称为星号臂 ——在各变量都取零水平的中心点的重复试验次数。
它可以只做一次,也可以重复二次或多次值表二次回归正交2345( 实施)11.001.4762.002.3921.1601.6502.1982.5831.3171.8312.3902.7741.4752.0002.5802.9551.6062.1642.7703.1461.7422.3252.9503.3171.8732.4813.1403.4982.0002.6333.3103.6692.1232.7823.4903.83102.2432.9283.664.00:3.二次回归旋转设计正交通用方案正交N 通用N 正交通用1241.4141613852381.68223209634162.000363112745322.37859117155( )162.0003632106: data Experiment; input x1 x2 Y t1 t2; datalines; 80 170 76.5 –1 -1 80 180 77.0 –1 1 90 170 78 1 -1 90 180 79.5 1 1 85 175 79.9 0 0 85 175 80.3 0 0 85 175 80 0 0 85 175 79.7 0 0 85 175 79.8 0 0 92.07 175 78.4 1.414 0 77.93 175 75.6 –1.414 0 85 182.07 78.5 0 1.414 85 167.93 77 0 –1.414 ; proc rsreg data=Experiment; model Y =x1 x2; run;: The RSREG Procedure Coding Coefficients for the Independent Variables Factor Subtracted off Divided by x1 85.000000 7.070000 x2 175.000000 7.070000 Response Surface for Variable Y Response Mean 78.476923 Root MSE 0.266290 R-Square 0.9827 Coefficient of Variation 0.3393: Type I Sum Regression DF of Squares R-Square F Value Pr > F Linear 2 10.042955 0.3494 70.81 <.0001 Quadratic 2 17.953749 0.6246 126.59 <.0001 Crossproduct 1 0.250000 0.0087 3.53 0.1025 Total Model 5 28.246703 0.9827 79.67 <.0001 Sum of Residual DF Squares Mean Square Total Error 7 0.496373 0.070910 : Parameter Estimate Standard from Coded Parameter DF Estimate Error t Value Pr > |t| Data Intercept 1 -1430.688438 152.851334 -9.36 <.0001 79.939955 x1 1 7.808865 1.157823 6.74 0.0003 1.407001 x2 1 13.271745 1.484606 8.94 <.0001 0.728497 x1*x1 1 -0.055058 0.004039 -13.63 <.0001 -2.752067 x2*x1 1 0.010000 0.005326 1.88 0.1025 0.499849 x2*x2 1 -0.040053 0.004039 -9.92 <.0001 -2.002067 Sum of Factor DF Squares Mean Square F Value Pr > F x1 3 21.344008 7.114669 100.33 <.0001 x2 3 9.345251 3.115084 43.93 <.0001: The RSREG Procedure Canonical Analysis of Response Surface Based on Coded Data Critical Value Factor Coded Uncoded x1 0.275269 86.946152 x2 0.216299 176.529233 Predicted value at stationary point: 80.212393 Eigenvectors Eigenvalues x1 x2 -1.926415 0.289717 0.957112 -2.827719 0.957112 -0.289717 Stationary point is a maximum.: ::数据的编码•设因素A分为A1,A2两水平[A1,A2]•中点 Z=(A1+A2)/2•半间隔H=(A2-A1)/2•编码值Xi=(Ai-Z)/H•A1=225 ,A2=375•Z=(225+375)/2=300 H=(375-225)/2=75•X2=(375-300)/75=1 X1=(225-300)/75=-1•X0=(300-300)/75=0 对 1.682=(AI-300)/75• 可求得 AI=426:::::::::::::::实验设计菜单操作 :析因设计析因设计 概述概述 析因设计析因设计(Factorial Design)是一种多因素是一种多因素多水平交叉分组进行全面试验的设计方法。
它可以多水平交叉分组进行全面试验的设计方法它可以研究两个或两个以上因素多个水平的效应在析因研究两个或两个以上因素多个水平的效应在析因设计中,研究因素的所有可能的水平组合都能被研设计中,研究因素的所有可能的水平组合都能被研究到,例如究到,例如4个因素同时进行实验,每个因素取两个个因素同时进行实验,每个因素取两个水平,实验的总组合数为水平,实验的总组合数为24=16;如果水平为;如果水平为3,则,则有有34=81种组合数即是这种组合数即是这81种组合均进行实验种组合均进行实验所以析因设计可以分析观测指标与研究因素间的复所以析因设计可以分析观测指标与研究因素间的复杂关系,包括各因素间的交互作用杂关系,包括各因素间的交互作用(Interaction) 交互作用如果在一次实验中,当一个因素的水平间的效应差随其他因素的水平不同而变化时,因素之间就存在交互作用,它是各因素间效应不独立的表现 析因实验可以分析多种交互作用,二个因素间的交互作用称为一级交互作用,三个因素间的交互作用称为二级交互作用,四个因素间则称为三级交互作用,乃至更高级的交互作用例如观察三个因素的效应,其一级交互作用为:A×B,A×C与B×C,二级交互作用为A×B×C。
当析因实验设计因素与水平过多时,使交互作用分析内容繁多,计算复杂,而且带来专业解释的困难,故一般多用简单的析因实验数据处理均采用方差分析 Simple〔简单〕效应 当有交互作用时,主效应已经不能反映该因素的真实作用,因此要计算一个因素在另一因素的某一特定水平上的效应,即Simple效应 析因实验设计的优点主要是:①同时观察多个因素的效应,提高了实验效率;②能够分析各因素间的交互作用;③容许一个因素在其他各因素的几个水平上来估计其效应,所得结论在实验条件的范围内是有效的下面以两因素的析因设计为例介绍析因设计的方差分解〔见表14.4) : 首先看交互作用项F=36.75,P=0.0003,说明交互作用显著,不能看主效应分析的结果,需要进一步进行简单效应的分析,结果见表14.7 :从表14.7可以看出B药在A药的不同剂量时都是有效的,A药在B药的不同剂量时都是有效的同时还可以看到在析因设计方差分析中A药 与A,B交互作用的离均差平方和之和等于简单效应分析时A药在B药的不同剂量时的离均差平方和之和〔1.69+0.37=0.24+1.82);同样看到在析因设计方差分析中B药 与A,B交互作用的离均差平方和之和等于简单效应分析时B药在A药的不同剂量时的离均差平方和之和〔0.91+0.37=0.06+1.22)。
:: 在进行简单效应分析时使用的误差平方和就是析因设计时误差的离均差平方和可以看出在进行析因设计的方差分析时,如果交互作用是显著,按因素的不同水平分组进行单因素分析的方法是不妥的 ::::实验设计菜单操作 :Solutionsanalysisdesign of experiments:Filecreate new design2水平响应曲面:•下面以书本P100的例子为例作响应曲面:Select design…:选择试验参数选择因素个数选择中心点个数:关闭窗口、保存设计:定义因变量response如有多个因变量则点出ADD:点“OK”、保管:编辑因变量值编辑:编辑因素水平值:关闭窗口、保存设置:拟合模型、选择模型所含变量选择好后关闭窗口保存设置:找响应曲面,找最值:响应曲面找最值:next之后都“next〞就OK了!:这样就出了最大与最小值了!:这里可以看到报告详细操作还有赖大家回去一一探究!:。