26.1.3二次函数的图像(第2课时

上传人:hs****ma 文档编号:588414432 上传时间:2024-09-08 格式:PPT 页数:16 大小:432.02KB
返回 下载 相关 举报
26.1.3二次函数的图像(第2课时_第1页
第1页 / 共16页
26.1.3二次函数的图像(第2课时_第2页
第2页 / 共16页
26.1.3二次函数的图像(第2课时_第3页
第3页 / 共16页
26.1.3二次函数的图像(第2课时_第4页
第4页 / 共16页
26.1.3二次函数的图像(第2课时_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《26.1.3二次函数的图像(第2课时》由会员分享,可在线阅读,更多相关《26.1.3二次函数的图像(第2课时(16页珍藏版)》请在金锄头文库上搜索。

1、222464426.1.3 二次函数二次函数y=a(x-h)y=a(x-h)2 2的图象的图象复习复习二次函数二次函数y=ax2和和y=ax2+k的图象是一条抛物线。的图象是一条抛物线。1.二次函数二次函数y=ax2和和y=ax2+k的图象是什么形状?的图象是什么形状?2.二次函数二次函数y=ax2的性质是什么?的性质是什么?向向上上对对称称轴轴顶点顶点坐标坐标对称轴左对称轴左侧侧y随随x增增大而减小,大而减小,对称轴右对称轴右侧侧y随随x增增大而增大;大而增大;开口方向开口方向Y轴轴(0,0)a0 a0对称轴左对称轴左侧侧y随随x增增大而增大,大而增大,对称轴右对称轴右侧侧y随随x增增大而减

2、小。大而减小。解析式解析式 y = ax2a0 y = ax2+ka0向向下下函数的增减性函数的增减性a0a0(0,k) 说出下列二次 函数的开口方向、对称轴及顶点坐标 (1) y=5x2 (2) y=-3x2 +2 (3) y=8x2+6 (4) y= -x2-4向上,向上,y轴轴 (0, 0)向下,向下,y轴轴 (0, 2)向上,向上,y轴轴 (0, 6)向下,向下,y轴轴 (0, - 4)下面,我们探究二次函数下面,我们探究二次函数 y = ax-h2的图的图像和性质像和性质,以及与以及与y=ax2的联系与区别的联系与区别.探究探究画出二次函数画出二次函数 的图象,的图象,并考虑它们的开

3、口方向、对称轴和顶点并考虑它们的开口方向、对称轴和顶点x3210123284.5200284.522224644y= x+12 21y= x-12 212024.54.5 可以看出,抛物线可以看出,抛物线 的开口向下,对称轴是的开口向下,对称轴是经过点(经过点(1,0)且与)且与x轴垂直的直线,我们把它记住轴垂直的直线,我们把它记住直线直线x=1,顶点是顶点是(1,0);抛物线;抛物线 的开的开口向口向_,对称轴是,对称轴是_直线直线_,顶点是,顶点是_下下x = 1( 1 , 0 )2224644y= x+12 21y= x-12 21抛物线抛物线 与抛物线与抛物线 有什么关系?有什么关系?

4、可以发现,把抛物线可以发现,把抛物线 向左平移向左平移1个单位,就得到抛物线个单位,就得到抛物线 ;把抛物线;把抛物线 向右平移向右平移1个单位,就得到抛物线个单位,就得到抛物线 2224644探究探究 在同一坐标系中作二次函数在同一坐标系中作二次函数y =2(x-1)2和和y=2x2的图象的图象,会是什么样会是什么样? 二次项系数为二次项系数为2,开口开口向上向上;开口大小开口大小相同相同;对称轴对称轴不同;不同;增减性增减性相同相同. 顶点顶点不同不同,分别是分别是原点原点(0,0)和和(1,0)位置位置不同不同;最小值最小值相同相同二次项系数为二次项系数为2,开口开口向上向上;开口大小开

5、口大小相同相同;对称轴对称轴不同;不同;增减性增减性相同相同. 顶点顶点不同不同,分别是分别是原点原点(0,0)和和(2,0)位置位置不同不同;最小值最小值相同相同 在同一坐标系中作二次函数在同一坐标系中作二次函数y =2(x1)2和和y=2x2的图象的图象,会是什么样会是什么样? 归纳与小结归纳与小结二次函数二次函数y = ax-h2的性质的性质:(1)开口方向:)开口方向:当当a0时,开口向上时,开口向上;当当a0时,开口向下;时,开口向下;(2)对称轴:)对称轴:对称轴直线对称轴直线x=h;(3)顶点坐标:)顶点坐标:顶点坐标是(顶点坐标是(h,0)(4)函数的增减性:)函数的增减性:当

6、当a0时,时,对称轴左侧对称轴左侧(x h时时)y随随x增大而减小,增大而减小,对称轴右侧对称轴右侧(x h时时)y随随x增大而增大;增大而增大;当当a0时,时,对称轴左侧对称轴左侧y随随x增大而增大,增大而增大,对称轴右侧对称轴右侧y随随x增大而减小。增大而减小。(5)最值)最值上下平移时:上加下减(抛物线上移,高度上下平移时:上加下减(抛物线上移,高度变高,要使变高,要使y变大,则需要加;类似的抛物线变大,则需要加;类似的抛物线下移,高度变低,要使下移,高度变低,要使y变小,则需要减。)变小,则需要减。)左右平移时:左加右减(抛物线左移,高度左右平移时:左加右减(抛物线左移,高度不变,左移

7、后不变,左移后x变小了,要使变小了,要使y不变,则需要不变,则需要加;类似的抛物线右移,高度不变,右移后加;类似的抛物线右移,高度不变,右移后x变大了,要使变大了,要使y不变,则需要不变,则需要x 减。)减。)说出下列二次说出下列二次 函数的开口方函数的开口方向、对称轴及顶点坐标向、对称轴及顶点坐标 (1) y=2(x+3)2 (2) y=-3(x -1)2 (3) y=5(x+2)2 (4) y= -(x-6)2 (5) y=7(x-8)2向上向上, x= - 3, ( - 3, 0)向下向下, x= 1, ( 1, 0)向上向上, x= - 2, ( - 2, 0)向下向下, x= 6,

8、( 6, 0)向上向上, x= 8, ( 8, 0)1 抛物线抛物线y= -3(x+2)2开口向开口向 ,对称轴为,对称轴为 顶点坐标为顶点坐标为 .2 抛物线抛物线y=3(x+0.5)2可以看成由可以看成由抛物线抛物线 向向 平移平移 个单位个单位得到的得到的3写出一个开口向上,对称轴为写出一个开口向上,对称轴为x=-2,并且与,并且与y轴交于点(轴交于点(0,8)的抛物线解析式为)的抛物线解析式为 下下X= - 2( -2, 0)y=3x2左左0.5y=2(x+2)24 .对于任何实数对于任何实数h,抛物线,抛物线y=(x-h)2与抛物线与抛物线y=x2的的 相同相同5 .将抛物线将抛物线

9、y= -2x2向左平移一向左平移一个单位,再向右平移个单位,再向右平移3个单位个单位得抛物线解析式为得抛物线解析式为 .6.抛物线抛物线y=3(x-8)2最小值为最小值为 .方向,大小方向,大小y= - 2(x 2)207.抛物线抛物线y= -3(x+2)2与与x轴轴y轴轴的交点坐标分别为的交点坐标分别为 .8.已知二次函数已知二次函数y=8(x -2)2 当当 时时,y随随x的增大而增大的增大而增大, 当当 时,时,y随随x的增大而减的增大而减小小.( - 2, 0) (0, - 12)x2x29.二次函数二次函数y=a(x-h)2的图像是的图像是以以 为对称轴的为对称轴的 ,顶点坐标为顶点坐标为 . X=h抛物线抛物线(h, 0)1、二次函数、二次函数 是由二次函是由二次函数数 向向 平移平移 个单位得到的。个单位得到的。2、二次函数、二次函数 是由二次函是由二次函数数 向左平移向左平移3个单位得到的。个单位得到的。右右2

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号