《九年级数学下解直角三角形第三课时课件人教版》由会员分享,可在线阅读,更多相关《九年级数学下解直角三角形第三课时课件人教版(11页珍藏版)》请在金锄头文库上搜索。
1、2009年3月例例3. 如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东65方向,距离方向,距离灯塔灯塔80海里的海里的A处,它沿正南方向航行一段时间后,到处,它沿正南方向航行一段时间后,到达位于灯塔达位于灯塔P的南偏东的南偏东34方向上的方向上的B处,这时,海轮所处,这时,海轮所在的在的B处距离灯塔处距离灯塔P有多远?有多远? (精确到(精确到0.01海里)海里)6534PBCA指南或指北的方向线与目标方向线构成小于指南或指北的方向线与目标方向线构成小于900的角的角,叫做叫做方位角方位角.如图:点如图:点A在在O的北偏东的北偏东30点点B在点在点O的南偏西的南偏西45(西南方
2、向)(西南方向)3045BOA东东西西北北南南方向角方向角例例3 如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东65方向,距离灯塔方向,距离灯塔80海里海里的的A处,它沿正南方向航行一段时间后,到达位于灯塔处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东的南偏东34方向上的方向上的B处,这时,海轮所在的处,这时,海轮所在的B处距离灯塔处距离灯塔P有多远(精确到有多远(精确到0.01海里)?海里)?解:如图解:如图 ,在,在RtAPC中,中,PCPAcos(9065)80cos25800.91=72.8在在RtBPC中,中,B34当海轮到达位于灯塔当海轮到达位于灯塔P的南偏
3、东的南偏东34方向时,它距离灯塔方向时,它距离灯塔P大约大约130.23海里海里6534PBCA 解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角时,只要测出仰角a和大坝的坡面长度和大坝的坡面长度l,就能算出,就能算出h=lsina,但是,当我们要测量如图所示的,但是,当我们要测量如图所示的山高山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山和山坡
4、长度坡长度l化整为零,积零为整,化曲为直,以直代曲的解决问题的策略化整为零,积零为整,化曲为直,以直代曲的解决问题的策略与测坝高相比,测山高的困难在于;坝坡是与测坝高相比,测山高的困难在于;坝坡是“直直”的,而山坡是的,而山坡是“曲曲”的,怎样解决这样的问题呢?的,怎样解决这样的问题呢?hhll 我们设法我们设法“化曲为直,以直代曲化曲为直,以直代曲” 我们可以把山坡我们可以把山坡“化整化整为零为零”地划分为一些小段,图表示其中一部分小段,划分小段地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是时,注意使每一小段上的山坡近似是“直直”的,可以量出这段的,可以量出
5、这段坡长坡长l1,测出相应的仰角,测出相应的仰角a1,这样就可以算出这段山坡的高度,这样就可以算出这段山坡的高度h1=l1sina1. 在每小段上,我们都构造出直角三角形,利用上面的方法分别算在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度出各段山坡的高度h1,h2,hn,然后我们再然后我们再“积零为整积零为整”,把,把h1,h2,hn相加,于是得到山高相加,于是得到山高h.hl 以上解决问题中所用的以上解决问题中所用的“化整为零,积零为整化整为零,积零为整”“化曲为直,以直代曲化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,的做法,就
6、是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容在今后的学习中,你会更多地了解这方面的内容 练习:海中有一个小岛练习:海中有一个小岛A,它的周围,它的周围8海里范围内有暗海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在礁,渔船跟踪鱼群由西向东航行,在B点测得小岛点测得小岛A在在北偏东北偏东60方向上,航行方向上,航行12海里到达海里到达D点,这时测得小点,这时测得小岛岛A在北偏东在北偏东30方向上,如果渔船不改变航线继续向方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?东航行,有没有触礁的危险?BA ADF6012301. 海中有一个小岛海
7、中有一个小岛A,它的周围,它的周围8海里内有暗礁,渔船跟踪鱼群海里内有暗礁,渔船跟踪鱼群由西向到航行,在由西向到航行,在B点测得小岛点测得小岛A在北偏东在北偏东60方向上,航行方向上,航行12海里到达海里到达D点,这时测得小岛点,这时测得小岛A在北偏到在北偏到30方向上,如果渔船方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?不改变航线继续向东航行,有没有触礁的危险?BADF解:由点解:由点A作作BD的垂线的垂线交交BD的延长线于点的延长线于点F,垂足为,垂足为F,AFD=90由题意图示可知由题意图示可知DAF=30设设DF= x , AD=2x则在则在RtADF中,根据勾股定理中,
8、根据勾股定理在在RtABF中,中,解得解得x=610.4 8没有触礁危险没有触礁危险练习练习30602. 如图,拦水坝的横断面为梯形如图,拦水坝的横断面为梯形ABCD(图中(图中i=1:3是指坡面的铅直高是指坡面的铅直高度度DE与水平宽度与水平宽度CE的比),根据图中数据求:的比),根据图中数据求:(1)坡角)坡角a和和;(2)坝顶宽)坝顶宽AD和斜坡和斜坡AB的长(精确到的长(精确到0.1m)BADFEC6mi=1:3i=1:1.5解解:(:(1)在)在RtAFB中,中,AFB=90 在在RtCDE中,中,CED=90 1.在解直角三角形及应用时经常接触到的一些概念在解直角三角形及应用时经常接触到的一些概念(仰仰角角,俯角俯角;方位角等方位角等) 2.实际问题向数学模型的转化实际问题向数学模型的转化 (解直角三角形解直角三角形) 利用解直角三角形的知识解决实际问题的一般过程是:利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;直角三角形;(3)得到数学问题的答案;)得到数学问题的答案;(4)得到实际问题的答案)得到实际问题的答案