九年级数学 圆周角 课件

上传人:M****1 文档编号:588302526 上传时间:2024-09-07 格式:PPT 页数:18 大小:527.50KB
返回 下载 相关 举报
九年级数学 圆周角 课件_第1页
第1页 / 共18页
九年级数学 圆周角 课件_第2页
第2页 / 共18页
九年级数学 圆周角 课件_第3页
第3页 / 共18页
九年级数学 圆周角 课件_第4页
第4页 / 共18页
九年级数学 圆周角 课件_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《九年级数学 圆周角 课件》由会员分享,可在线阅读,更多相关《九年级数学 圆周角 课件(18页珍藏版)》请在金锄头文库上搜索。

1、3.43.4圆周角圆周角 (2)(2)特征:特征: 角的顶点在圆上角的顶点在圆上. 角的两边都与圆相交角的两边都与圆相交.1、圆周角定义、圆周角定义: 顶点在圆上顶点在圆上,并且两边都和圆相交的角叫圆周并且两边都和圆相交的角叫圆周角角.一、旧知回放一、旧知回放:2、圆心角与所对的弧的关系、圆心角与所对的弧的关系3、圆周角与所对的弧的关系、圆周角与所对的弧的关系4、同弧所对的圆心角与圆周角的关系、同弧所对的圆心角与圆周角的关系一、旧知回放一、旧知回放:圆周角圆周角定理定理一条弧所对的一条弧所对的圆周角圆周角等于它所对的等于它所对的圆心角圆心角的一半的一半. .OABCOABCOABC即即 ABC

2、 = AOC.ABC = AOC.1、100 的的弧弧所所对对的的圆圆心心角角等等于于_,所所对对的的圆圆周周角角等等于于_。2、一一弦弦分分圆圆周周角角成成两两部部分分,其其中中一一部部分分是是另另一一部部分分的的4倍倍,则这弦所对的圆周角度数为则这弦所对的圆周角度数为_。3、如图,在、如图,在O中,中,BAC=32 ,则,则BOC=_。4、如图,、如图,O中,中,ACB = 130 ,则,则AOB=_。5、下列命题中是真命题的是(、下列命题中是真命题的是( )(A)顶点在圆周上的角叫做圆周角。)顶点在圆周上的角叫做圆周角。(B)60 的圆周角所对的弧的度数是的圆周角所对的弧的度数是30 (

3、C)一弧所对的圆周角等于它所对的圆心角。)一弧所对的圆周角等于它所对的圆心角。(D)120 的弧所对的圆周角是的弧所对的圆周角是60 课前测验课前测验AOCBBAOC100 50 36 或或14414464 100 D问题讨论问题讨论问问题题1、如如图图1, ,在在OO中中,B,D,E,B,D,E的的大大小小有有什什么么关关系系? ?为什么为什么? ?图图1问题问题2、如图、如图2,AB是是O的直径,的直径,C是是O上任一点,上任一点,你你能确定能确定BACBAC的度数吗的度数吗? ?BAOC图图2问题问题3、如图、如图3,圆周角,圆周角BAC =90,弦,弦BC经过圆心经过圆心O吗?为什么?

4、吗?为什么?B = D= EBAC =90OBACDEOBCA图图3问题解答问题解答1、圆周角定理的推论、圆周角定理的推论1:同圆或等圆中,同圆或等圆中,同弧或等弧所对的圆周角相等;同弧或等弧所对的圆周角相等;同圆或等圆中,同圆或等圆中,相等的圆周角所对的弧也相等。相等的圆周角所对的弧也相等。2、圆周角定理的推论、圆周角定理的推论2:半圆(或直径)所对的圆周角是直角;半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。的圆周角所对的弦是直径。用于找相等的用于找相等的角角用于找相用于找相等的弧等的弧用于判断某个用于判断某个圆周角是否是圆周角是否是直角直角用于判断某用于判断某条线是否过条

5、线是否过圆心圆心例例2已知:如图,在已知:如图,在 ABC中,中,AB=AC,以以AB为直径的圆交为直径的圆交BC于于D,交交AC于于E,求证:求证:BD=DEABCDE练习:练习:如图,如图,P是是 ABC的外接圆上的一点的外接圆上的一点 APC= CPB=60。求证:求证: ABC是等边三角形是等边三角形APBCO例例3: 船在航行过程中,船长常常通过测定船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁。如图角度来确定是否会遇到暗礁。如图A,B表示表示灯塔,暗礁分布在经过灯塔,暗礁分布在经过A,B两点的一个圆形两点的一个圆形区域内,区域内,C表示一个危险临界点,表示一个危险临界点,

6、 ACB就就是是“危险角危险角”,当船与两个灯塔的夹角大,当船与两个灯塔的夹角大于于“危险角危险角”时,就有可能触礁。时,就有可能触礁。弓形所含的圆周角弓形所含的圆周角 C=50,问船在航行问船在航行时怎样才能保证不进时怎样才能保证不进入暗礁区入暗礁区?(1)当船与两个灯塔的夹角)当船与两个灯塔的夹角 大于大于“危险角危险角”时,船位于哪个区域?为什么?时,船位于哪个区域?为什么?(2)当船与两个灯塔的夹角)当船与两个灯塔的夹角 小于小于“危险角危险角”时,船位于哪个区域?为什么?时,船位于哪个区域?为什么?一个圆形人工湖一个圆形人工湖,弦弦AB是湖上的一座桥是湖上的一座桥,已知桥已知桥AB长

7、长100m.测得圆周角测得圆周角 C=45求这个人工湖求这个人工湖的直径的直径.ABC一个圆形人工湖一个圆形人工湖,弦弦AB是湖上的一座桥是湖上的一座桥,已知桥已知桥AB长长100m.测得圆周角测得圆周角 C=45求这个人工湖求这个人工湖的直径的直径.ABCD1.说出命题说出命题圆的两条平行弦所夹的弧相等圆的两条平行弦所夹的弧相等”的逆命题的逆命题.原命题和逆命题都是真命题吗原命题和逆命题都是真命题吗?请说明理由请说明理由.2.已知已知:四边形四边形ABCD内接于圆内接于圆,BD平分平分 ABC,且且AB CD.求证求证:AB=CDABCD如图如图:AB是是O的直径的直径,弦弦CD AB于点于

8、点E,G是是上任意一点上任意一点,延长延长AG,与与DC的延的延长线相交于点长线相交于点F,连接连接AD,GD,CG,找出图找出图中所有和中所有和 ADC相等的角相等的角,并说明理由并说明理由.ACABDGFCEO1如图如图,O中中,AB是直径是直径,半径半径CO AB,D是是CO的的中点中点,DE / AB,求证求证:EC=2EA.ABEODC2,已知,已知BC为半圆为半圆O的直径,的直径,AB=AF,AC交交BF于点于点M,过,过A点作点作ADBC于于D,交,交BF于于E,则,则AE与与BE的大小有什么关系?的大小有什么关系?为什么?为什么?小结与作业小结与作业1 1、本节课我们学习了哪些知识?、本节课我们学习了哪些知识?2 2、圆周角定理及其推论的用途你、圆周角定理及其推论的用途你都知道了吗?都知道了吗?

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号