《智能物流第04章专业教育》由会员分享,可在线阅读,更多相关《智能物流第04章专业教育(42页珍藏版)》请在金锄头文库上搜索。
1、第第4章章 商业智能商业智能学习要点l商业智能的概念l商业智能的核心技术l商业智能在智能物流中的应用趋势目录4.5小结4.4商业智能的智能物流应用4.3商业智能决策分析技术4.2商业智能系统4.1商业智能概念思考题思考题 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.1.1 商业智能的定义p商业智能概念的提出1996年,加特纳集团(Gartner Group)首次提出商业智能概念。它描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。p商业智能技术将企业现有的数据,经过管理分析等手段,提取有用信息,进而转化为知识,为企业做出明智的业务经营
2、决策的工具。p商业智能的定义目前,学术界对商业智能的定义并不统一。商业智能通常被理解为是对商业信息的搜集、管理和分析过程,目的是使企业的各级决策者透过数据表面获得潜在知识,使他们做出对企业更为有利的业务经营决策。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用p商业智能的定义(续)总结:商业智能(BI, Business Intelligence)是通过数据仓库、联机分析处理、数据挖掘等技术,通过应用基于事实的支持系统,对企业内部及外部数据的搜集、管理和分析,为企业提供决策支持以增强其综合竞争力的智能系统。4.1.1 商业智能的定义1.基于事实的支持系统2. 通过
3、商业智能技术3. 对企业内外部数据进行搜集、管理、分析为企业提供决策支持的智能系统 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.1.2商业智能的背景和主要特点p商业智能的背景l传统:报表系统l新型:商业智能系统p被替代原因:数据“拥挤”现象:大量数据的无规则罗列和数据的不一致。数据内在价值被埋没:数据转化为信息及知识的过程存在困难。企业运营模式变化:传统形式向电子商务转型,大量电子数据的生成。数据库和人工智能技术发展:新技术使企业用更低的成本获得更高的IT投资回报率。商业智能是企业利用现代信息技术收集、管理和分析结构化和非结构化的商业数据和信息,创造和累积商
4、务知识和见解,改善商务决策水平,采取有效的商务行动,完善各种商务流程,提升各方面商务绩效,增强综合竞争力的智慧和能力。因此,随着企业信息化的不断深化,商业智能逐渐成为企业决策者的重要工具。报表系统商业智能系统被替代 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.1.2商业智能的背景和主要特点p商业智能的主要特点 即时性即时性实时从业务系统中获得最新的数据实时从业务系统中获得最新的数据准确性准确性自动化自动化避免了手工操作中的失误,并建立数据核对机制避免了手工操作中的失误,并建立数据核对机制根据客户设定,完成自动获取最新数据过程根据客户设定,完成自动获取最新数据
5、过程灵活性灵活性 决策支持的展现方式灵活多样决策支持的展现方式灵活多样网络化网络化 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用p商业智能技术提升企业效率减少人力收集、分析数据时间增加核心决策时间l 4.1.3商业智能对智能物流的完善 企业商业智能应用前后时间分配对比 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用p商业智能从四方面完善智能物流系统4.1.3商业智能对智能物流的完善1.1.更为合理的数据存储方式更为合理的数据存储方式存储经过抽取、转换、装载后的数据,避免对多余数据的无用分析。2.2.更加灵活的分析手段及方法更加灵活的
6、分析手段及方法实现多维度分析,呈现从围观到宏观各层级数据,降低物流成本、提高效率。3.3.实现各个层级的主题分析实现各个层级的主题分析针对各层级决策需求,建立对应分析模型,做到因地制宜。4.4.提高综合决策能力提高综合决策能力通过信息关联,为决策者提供更为简洁的监控能力,提高管理效率,避免信息阻塞带来的风险。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.1系统的构成及运作p商业智能系统商业智能系统是一个基于商业智能技术,通过搜取数据,理解数据在系统中的流动,发现数据在企业中的应用的过程。1.源数据层,即初始数据它收集了包括由财务系统、销售系统、库存系统、
7、客户服务等在内的企业内部数据以及包括竞争对手信息、其他外部环境在内的外部数据。常用的软件:大型应用软件SAP、ORACLE,中型软件用友、金蝶等。商业智能系统结构 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.1系统的构成及运作2.数据集成,即数据转换层它负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行抽取、转换、装载,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据处理方法:简单变换;数据形式转换;数据集成。常用的软件:微软的SQLSever2005中的SSIS工具,还有Informatica、Dat
8、astage等。3.数据仓库(Data Warehouse, DW)它面向主题的、集成的、稳定的、随时间不断变化的数据集合,用以支持经营管理中的决策制定过程。数据仓库能为多维分析和数据挖掘等分析工具提供所需要的、整齐一致的数据。常用的软件: SQLSever、Oracle、Sybase等。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.1系统的构成及运作4.联机分析处理(On Line Analytical Processing, OLAP)它帮助分析人员、管理人员从多种角度(维度)把从原始数据(当前及历史数据)中转化出来、能够真正被用户所理解的、并反映数
9、据真实性的信息,进行快速、一致、交互地访问,从而使决策者获得对数据的更深入了解。常用的软件: SQLSever Analysis Services 和 Hyperion Essbase等。5.数据挖掘(Data Mining, DM)它负责进行数据汇总、概念描述、分类、聚类、相关性分析、偏差分析、演变分析、建模、预测等。常用的软件:SAS, SPSS等。6.信息展示(Display)它负责通过图形、图表、图像、模拟仿真等易于人们所辨识的方式展现原始数据间的复杂关系、潜在信息及发展趋势,以便决策者能够更好地利用所掌握的信息资源。常用的软件:微软的ReportingServices, Crysta
10、lReport工具,BusinessObjects等;另一类为OLAP展现工具,包括微软的SSAS或者 Excel等。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.1系统的构成及运作商业智能系统体系结构 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.2系统对象和系统优势p商业智能系统的对象l决策的初级阶段(操作层)l决策的中级阶段(战术层)l决策的高级阶段(战略层)战略层战术层操作层各层级的工作场景 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.2系统对象和系统优势l决策的初级阶
11、段决策所需要的信息是对原始数据的分类、汇总、排序,以获得对经营活动的直观印象。数据:销售、市场、财务、运营等方面。l决策的中级阶段在中级阶段,是对分类汇总数据中的明细数据和相关关键绩效指标(Key Performance Indicator, KPI)的展现,以及对相关联的明细数据,从不同角度进行的交叉观测,以获得对数据反映出的商业结果的原因探索。主要KPI:财务分析指标;反映客户管理的指标;反映流程管理的指标;反映人力资源方面的指标。l决策的高级阶段企业根据数据对未来做出趋势判断,或者根据特定数学模型获得的分类信息,对未来市场进行预测,为行动提供指南。趋势预测分析法:指数平滑分析、时间序列回
12、归分析等方法,以及数据挖掘技术和运筹规划中的其他方法等等。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.2系统对象和系统优势决策支持的三个层次 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.2系统对象和系统优势p商业智能系统的目的商业智能系统的目的是获得高的投资回报率,应用程度越高、体会越深,投资回报也会越丰厚。商业智能系统的应用,为企业决策智能化提供了完善的技术支持,也使决策更加快速、准确、科学。原原始始数数据据清清洗洗后后数数据据信信息息展展现现常常规规报报表表经经分分析析后后数数据据个个性性化化制制定定 /优优
13、化化趋趋势势预预测测数据数据信息信息知识知识智能智能投投资资回回报报了解现状知晓原因预测未来商业智能价值体现 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.2.2系统对象和系统优势p案例分析l公司:雅戈尔集团l行业:服装l转型原因:市场由买方市场转为买方市场,利润减少根据订货安排生产计划的模式不能及时满足市场需求库存积压,物流成本激增l转型方式:使产业结构向信息化调整,建立自己的供应链和物流管理系统。l使用软件:IBM Cognos软件l改进效果:订单反应能力及生产周期缩短50%库存周转率提高1倍以上缺货损失减少30%以上工厂准时交货率达到99%以上 商业智能
14、的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.1数据仓库技术(Data Warehouse, DW)p数据仓库技术数据仓库(Data Warehouse, DW)是储存和管理数据的地方,这些数据是来自各种数据源,经过抽取、转换、装载并经过加工和汇总得到的数据。它是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的 (Non-Volatile)、反映历史变(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。p数据仓库优点将源数据进行抽取、转换、装载加工和汇总,提高利用
15、数据价值。经由整理的数据是关于某一主题所特定筛选的数据集合,满足决策的不同目标和要求。克服了数据库的有限查询、数据易重复、利用率低的缺点。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.1数据仓库技术(Data Warehouse, DW)p数据仓库与数据库与传统操作型数据库相比,数据仓库具有面向主题、集成的、相对稳定的、反映历史变化的特点。数据库数据库数据仓库数据仓库作用简单的数据检索,进行事务性支持为战术性和战略性决策提供信息数据日常事务及琐碎数据分析性数据数据来源未经加工的当前数据,或经初步汇总的数据被同构的,经提取、转换、装载等过程具有统计性的数据
16、数据范围局部或专门数据来自企业内外部数据,具有广泛性和普遍性稳定性不停发生变化相对稳定,定期刷新停机时间可能意味着灾难性错误可能意味着延迟决策数据仓库与数据库的区别 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.1数据仓库技术(Data Warehouse, DW)p数据仓库与数据集市l数据仓库优点:数据量大,信息丰富、全面等。缺点:查询速度缓慢,针对性不强。l数据集市针对数据仓库的缺陷而产生的数据存储结构。它隶属于数据仓库。为某个部门或某项业务提供对应目的或应用范围的数据。提高查询效率及准确性。数据仓库数据集市数据来源系统,内部、外部数据数据仓库范围企业
17、级部门级或工作组级主题企业主题部门级或工作组级数据颗粒最细的粒度较粗的粒度历史数据大量的历史数据适度的历史数据优化处理海量数据、数据索引便于访问和分析、快速查询数据仓库与数据集市的区别 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.2联机分析处理技术(On Line Analytical Processing,OLAP)p联机分析处理技术出现的背景l联机事物处理(On Line Transaction Processing, OLTP)在1993年前被普遍使用,以处理日常业务。l联机分析处理技术(On Line Analytical Processing,
18、 OLAP)在1993年由数据库之父 E. F. Cold 提出, 满足日益增长的数据处理需求。p被替代原因:数据存储量小对数据的查询分析能力不能满足需求只能提供简单的查询结果OLTPOLTPOLAPOLAP数据来源底层数据库数据仓库面向对象操作人员和底层管理人员决策人员和高层管理人员作用对数据进行查询、增加、删除、修改等对数据仓库进行信息的分析处理处理类型日常事务型(应用)决策型(分析)OLTP与OLAP的区别 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.2联机分析处理技术(On Line Analytical Processing,OLAP)p“维”
19、的概念OLAP是从多角度分析,对数据进行进一步了解,传统的关系型数据库不能满足要求,需要一种新的技术叫做多维数据库。维(Dimension),是联机分析处理的核心概念,是我们观察世界的角度,是一种高层次的类型划分。“维”可以表示属性,例如时间属性可称为时间维,地点属性称为地点维等。2012123 4562011时时间间牙膏香皂牙刷洗发水护发素销销售售种种类类华北华南东北西北地区地区西南销售额销售额¥ 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.2联机分析处理技术(On Line Analytical Processing,OLAP)pOLAP的定义OLA
20、P 委员会对其定义:使分析人员、管理人员或执行人能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的、并真实反映企业维特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。它满足决策者在多维环境、复杂结构下的特定要求,对数据进行各种操作以得到查询结果,并以报表形式展示,侧重决策支持。E. F. Cold 描述OLAP系统的12条准则OLAP模型必须提供多维概念视图动态的稀疏矩阵处理准则透明性准则多用户支持能力准则存取能力推测非受限的跨维操作稳定的报表能力直观的数据操纵客户/服务器体系结构灵活的报表生成维的等同性准则不受限的维与聚集层次 商业智能的概念 商业智
21、能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.2联机分析处理技术(On Line Analytical Processing,OLAP)pOLAP的功能特征1.1.具有多维数据库具有多维数据库将数据进行多维存储,以便进行多层次、多角度分析。OLAP提供数据仓库中数据的多维逻辑视图,以直观的分析模型在不同层次之间跨界计算和建模。2.2.交互式的快速响应查询交互式的快速响应查询深入、详细剖析较低层的数据或统揽较高层的概括及聚集数据来进行交互式查询。为了提高查询和响应速度,应用数据的矩阵存储技术和一系列的数据压缩技术。3.3.动态数据分析动态数据分析侧重动态数据的分析,并可以在其内部
22、对数据进行自动地转换,使得用户可以在 交互过程中获得明确的分析结果。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.2联机分析处理技术(On Line Analytical Processing,OLAP)pOLAP 的多维分析方法OLAP 中的多维分析是指对以多维形式组织起来的数据采取各种分析动作,剖析数据,使最终用户能从多角度、多侧面观察数据,从而深入地了解数据中的信息、内涵。p多维分析方法包括:切片(Slice):对多维数据中的任意二维作为观察角度。原理:舍弃部分维度,集中分析二维数据。切块(Dice):选定多维数据中的任意三维作为观察角度。原理:舍
23、弃部分维度,集中分析三维数据。旋转(Pivot):改变维的方向,使用户从不同角度来分析数据。原理:交换行和列,或者把某一行维变成列维。下钻(Drill down):将某一维度的衡量单位缩小,进而更加具体的了解数据。原理:从汇总数据深入到细节数据。上卷(Drill up):在某一维上将低层次的细节数据概括到高层次的汇总数据原理:下钻的逆过程,减少维数。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.3数据挖掘技术(Data Mining, DM)p数据挖掘的定义数据挖掘(Data Mining, DM)也叫知识发现(Knowledge Discovery i
24、n Database, KDD),是从庞大的数据集合中发现新的规律或模式的过程。过程中使用人工智能、机器学习、统计分析、数据库系统等工具。数据挖掘的目标是针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到有价值的、未知的关系、趋势,提取有效信息,对知识进行提炼,最后以合适的知识模式展示出来,用于进一步分析决策工。机器学习机器学习概率论概率论数据库数据库数据挖掘数据挖掘 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.3数据挖掘技术(Data Mining, DM)p数据挖掘方法l分类区隔分类(Classification):对数据库中的示例数据进行分
25、析,对每个类别做出对应描述,挖掘分类规则。当遇到新数据时,在已被描述的类别中找到与自己相匹配的,从而确定新数据的类别。分群(Clustering):分群也叫做聚类,其输入集是还没有进行任何分类的数据。其目的是根据一定的规则,合理地划分记录集合,使组之间的差别尽可能大,组内的差别尽可能小,例如市场划分等。l序列规则关联分析(Association):分析两个事物同时出现的规律。序列分析(Sequence):发现事物的出现规律与时间的关系。l推算预测回归分析(Regression):包括主元素分析法和相关分析法。它是使用一系列的现有数值来预测一个连续数值的可能值。时间序列(Time-series)
26、:用现有的数值来预测未来的数值。所分析的数值都与时间有关。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.3数据挖掘技术(Data Mining, DM)部分数据挖掘方法示例 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.3数据挖掘技术(Data Mining, DM)p商业智能系统三大支撑技术(综上)l数据仓库技术是联机分析处理和数据挖掘的基础,为后两项操作提供了准确、“干净”的数据。通过对数据仓库的基本查询,可以得到标准报表,用户知道发生了什么。l联机分析处理技术是数据仓库的增值技术。通过联机分析处理,用户知道为什
27、么会发生。l数据挖掘技术是数据仓库的增值技术。数据挖掘则告诉用户为什么发生和以后会发生什么。三项技术的复杂度递增,使用人数递减。越重大的决策,越需要更多的分析处理方法辅助。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.4展示技术(Display)p展示技术商业智能的展示技术也可称为信息可视化技术(Visualization)。通过更易理解的图标方式展现数据内容及内涵,辅助决策者理解数据信息。l提供数据集合的整体样式:反映结构、模式、趋势。l帮助确定“有意义”的信息领域。l展示技术:折线图、柱状图、KIVIAT 图、饼图、散点图等。部分展示技术示例 商业智
28、能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.4展示技术(Display)l仪表盘技术商业智能可视化技术中的一项特殊技术。p优点:使企业管理者以类似驾驶仪表盘的方式总览企业经营状况的关键业务指标和综合指标,让管理者更直观更容易去发现问题。有效地运用数据仓库的数据挖掘技术,结合一定的分析方法,寻找问题根源,辅助正确的决策。供自定义分析指标,可以满足不同层次管理者个性化的需求。对数据进行对比。直观呈现数据信息,更加形象。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.3.5仿真技术(Simulation)p仿真技术以多种学科和理论为
29、基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题。l原理:建立既能能反映研究对象实质、又易于被计算机处理的数学模型,将研究对象的实质抽象出来,经过计算机的处理,通过输出这些模型的相关数据或是三维立体形式来展现研究对象的某些特质。l实现模拟仿真的三个步骤:模型的建立模型的转换模型的仿真实验 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.4.1商业智能与物联网p物联网l物联网的三个层次:第一层:感知层,承担物的信息的采集以及对物体属性进行标识,也就是让物体自己“说话”,从而被识别。第二层:通信层。承担信息的可靠传输,借用现有的各种网络来实现,
30、目的是将物与物、人与人、人与物之间相互连通并实现数据传递和交互的传输网络。第三层:应用层。即通过后台庞大的软件系统对各种形式的数据、文件进行智能分析和管理。l我国物联网环境:l优势:息网络与传输技术基础较好。l劣势:在感知层即传感器和芯片制造、集成、预处理等方面还很薄弱。应用层上,海量信息处理的软件技术亟待加强。l商业智能技术完善物联网商业智能技术通过三大支撑技术,快速、合理、有效地完成数据汇总、“提纯”过程,满足企业希望对数据进一步进行分析的需求,从而帮助进行智能分析管理,完善物联网。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.4.2商业智能与智能物流中
31、其他技术的结合p物流管理理念变革l传统:货物流通l新型:货物流通,物流服务,信息整合。p商业智能技术与智能物流技术的结合l商业智能技术中数据仓库的建立需要以数据收集作为基础。 智能物流中感知技术RFID的应用,使这些数据及相关信息的收集更为方便、全面、无漏洞。l商业智能技术中数据间的传输需要应用高端且稳定的信息传递技术以达到信息共享。 智能物流中的通信技术便是利用几大网络,达到快速、稳定、流畅的数据传输,为分析的及时性提供保障。l商业智能的联机分析处理和数据挖掘技术正好弥补了智能物流中对于数据分析、关联性研究等决策系统的不足。l结果展示和仿真预测技术也为智能物流的决策提供了直观感受和决策依据。
32、 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.4.3商业智能在智能物流中的应用趋势p商业智能的应用是现代物流发展的趋势商业智能辅助现代物流企业摆脱以降低成本为主要目的,仓储、运输、配送、包装等各部门平行做事的格局。传统竞争模式成本时间质量新型竞争模式反应能力灵敏性精简智能 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.4.3商业智能在智能物流中的应用趋势p智能物流系统对商业智能的需求智能物流系统是一个庞大而复杂的系统,包括运输、仓储、配送、包装、装卸、信息获取等诸多环节,各个环节所产生的大量数据和信息,使企业很难对这些内容进
33、行准确、高效、及时的处理。l采购环节 基于数据仓库技术的商业智能系统可实现供应商信用评价,帮助企业为顺利生产打下坚实的基础,为最终产品在质量和成本上的定位提供科学的依据。l库存管理 基于商业智能系统构建的库存分析,既满足一般用户对获取库存物品情况的需要,又能辅助决策解决深层次的相关问题。l运输管理 智能交通系统是利用商业智能的成功范例。l财务分析 商业智能基于数据仓库技术的财务分析满足企业领导对各业务部门费用支出情况查询的要求,并实现了对应收款、应付款的决策分析,综合提高企业的财务运行状况。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.4.3商业智能在智能物
34、流中的应用趋势智能物流系统 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.4.3商业智能在智能物流中的应用趋势p物流企业的决策环节对商业智能的需要1.1.快速查询信息快速查询信息用户可以接入联网的关系型数据,也能接入其他数据库。操作简便,且可自动生成报表、报告。2.2.突破认知极限,进行多角度、全面分析突破认知极限,进行多角度、全面分析从多维度对问题进行全面分析,找出关键因素,为决策提供更为准确、信度高的信息。3.3.市场营销策略分析市场营销策略分析利用数据仓库技术实现市场营销策略在模型上的仿真,以仿真结果的方式提示企业制定的市场营销策略是否合适。4.4.个性
35、化分析个性化分析根据企业需求,因地制宜。分析结果显示直观、形象。5.5.整合物流供应链整合物流供应链使物流网络各节点和总部之间以及各网节点之间的信息充分共享。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用4.5小结p商业智能系统总结企业自身状况,收集外部竞争环境,使企业可以寻找到许多潜在的机会和问题,并通过对现有数据的分析处理来形成对用户的决策支持,为企业决策者改善物流运作能力提供有力支持。p商业智能工具的建立需要以支持商务需要为目的,将基于事实的信息传递给企业,以增加商务活动的效率及效用。三大支撑技术数据仓库、联机分析处理、数据挖掘,给企业提供了更详细的数据整理、数据分析及相关性分析手段,从混乱中挖掘价值,为企业深入了解商务运营、使他们获得对于战略决策及战术决策制定更为有效的商业信息提供了更好地支持。p商业智能技术在智能物流的应用已经具备了较为成熟的应用环境及技术条件,它将帮助企业挖掘自身潜能,为企业在市场中赢得商务先机。 商业智能的概念 商业智能系统 商业智能的核心技术 商业智能在智能物流中的应用思考题请表述商业智能的定义。简述商业智能发生的背景。简述商业智能体系是如何运作的。商业智能的三大核心技术是什么?请简要说明技术原理。请叙述为什么商业智能可以被用于智能物流系统。商业智能可用在智能物流系统中的哪些方面?谢谢!