中国数学史课件

上传人:re****.1 文档编号:588054516 上传时间:2024-09-07 格式:PPT 页数:40 大小:321.50KB
返回 下载 相关 举报
中国数学史课件_第1页
第1页 / 共40页
中国数学史课件_第2页
第2页 / 共40页
中国数学史课件_第3页
第3页 / 共40页
中国数学史课件_第4页
第4页 / 共40页
中国数学史课件_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《中国数学史课件》由会员分享,可在线阅读,更多相关《中国数学史课件(40页珍藏版)》请在金锄头文库上搜索。

1、亚历山大后期数学 中世纪的中国数学数本2003级中国数学史n教学目标:n 了解亚历山大后期数学及九章算术周髀算经数学内容,理解刘徽、祖冲之及祖恒重要数学成就的数学思想和方法,掌握刘徽及祖恒获得球体积公式的“牟合方盖”模型构造及过程,熟练掌握九章算术中的重要数学成就和“出入相补”原理及其运用。n教学重点:九章算术及刘徽、祖氏父子数学成就n教学难点:球体积公式的证明中国数学史一、 亚历山大后期和希腊数学的衰落n主要代表人物:海伦、托勒玫、丢番图、帕波斯n海伦(公元前1世纪公元1世纪),代表作量度,发现三角形面积公式 S=s(s-a)(s-b)(s-c)1/2 其中a,b,c为三边,s=(a+b+c

2、)/2n托勒玫(约100170年),代表作天文学大成,创立了三角学,并列出了从1/2度到1800每隔半度的圆心角所对的弦的长度,相当于00到900的正弦表。在大成中提出了地心说,后被中世纪基督教尊为教条,文艺复兴时期被哥白尼日心说取代。中国数学史n(一)三角术的创立n 为建立定量天文学,以便用来预报天体运行的路线、位置,帮助报时、计算日历和航海,古希腊人创立了一门全新的学科三角术。n三角术主要由希帕克斯、梅内劳斯和托勒玫(天文学家)建立。其中希帕克斯作了奠基性工作,梅内劳斯给予发展,托勒玫进行完善、总结并将成果收集在大成中。n(二)弦表的制作n 在三角术的建立过程中,古希腊人获得了包括今天我们

3、知道的相当于两角和、差的三角公式、半角与倍角等公式。此外,还制成30180每隔0.5度的圆心角所对弦的长度表(相当于正弦函数表),其制作过程和原理介绍如下:中国数学史1、问题、问题n已知弧AB所对圆心角2n求弦AB 由今天的知识知由今天的知识知ACAOsin当时,托勒玫将圆周分为当时,托勒玫将圆周分为360份,直径分为份,直径分为120份,份, sin ACAO(1/2)AB601/120(2 所对弦)所对弦)OABC中国数学史2、计算特殊角的弦、计算特殊角的弦n90的弦nAB=84 5110OABABCOEFE为CO中点,BE=EFFO、BF分别为圆内接正十、五边形的一边EB2=BO2+EO

4、2=602+302=4500EB=67 45536的弦FO=EF-EO=EB-EO=37 45572的弦BF=70 323中国数学史3、补弧定理、补弧定理 4、托勒玫定理:圆内接四边形两对角线长的、托勒玫定理:圆内接四边形两对角线长的乘积等于两对边乘积之和。乘积等于两对边乘积之和。ABC已知弧BC的弦为BC,圆心角为 ,则( 的弦)2+(1800 )的弦2=AB2相当于sin2 +cos2 =1中国数学史5、差弧定理n当圆内接四边形一边为直径时,已知AB,AC,则可求出BCABCD由托勒玫定理有ACBD=ABCD+BCAD由补弧定理,AB已知,由BD可求;同理可求CD,ADO为直径,故BC可求

5、结论:ADC和 ADB所对弦已知,差角 BDC所对弦可求,即两角差的三角函数公式6、托还求出相当于今天的半角、倍角及求和公式,根据这些定理制作出了弦表。中国数学史n丢番图(公元246330年),代数学的鼻祖。n墓志铭:童年占一生的1/6,此后过了一生的1/12开始长胡子,再过一生的1/7后结婚,婚后5年生了个孩子,孩子活到父亲的一半的年龄,孩子死后4年父亲也去世,问丢番图活了多少岁?n主要代表作算术,以解不定方程而著称。创用了一套缩写符号。n著名问题:将一个已知的平方数分为两个平方数。(引出了费马大定理:xn+yn=zn 没有正整数解)中国数学史重要贡献:创用一套缩写符号,使用了特殊的记号表示

6、未知数 。表示方程 x35x2+8x 1=0不足:解题方法上缺乏一般性。中国数学史n其他数学家:n尼马可修斯(公元100年左右),算术入门,数论著作,采用“筛法”寻找质数。n梅内劳斯球面论n希帕蒂娅第一位杰出的女数学家。被基督教暴徒残杀。帕波斯(约公元300350年),数学评注家,著作数学汇编(是希腊数学的安魂曲)中国数学史二 周髀算经n(一)古代背景n、背景:我国在公元前两千多年前(大禹时期)进入奴隶社会,于公元前400多年左右(战国时期)进入封建社会,以后有几段太平盛世,形成超稳定社会结构。生产力发展较快,数学研究也处于较高水平。在萌芽期,水平与古埃及、巴比伦相当,春秋战国至魏晋南北朝时期

7、数学可与古希腊媲美,中世纪宋元时期则发展为一枝独秀。凡算之法,先识其位。一纵十横,百立千僵,千十凡算之法,先识其位。一纵十横,百立千僵,千十相望,万百相当。满六以上,五在上方,六十积算,相望,万百相当。满六以上,五在上方,六十积算,五不单张。五不单张。中国数学史n、古算特点: 讲求实用:为天文、经济、军事和文化需要而产生并发展起来的。 机械化算法体系:计算为主,独创计算工具“算筹”,促进了计算技术的发展,成为当时世界最先进的数学成就。 构造性和可计算性。 著作形式。3、理论几何萌芽中国数学史算经十书汉唐时期的数学 代表作。周髀算经、九章算术、海岛算经、孙子算经、张丘建算经、缉古算经、数术记遗、

8、五曹算经、五经算术、夏侯阳算经n(二)周髀算经中国古代数学著作中最早的一部。以盖天说为中心的天文学著作,有许多数学知识。如以文字叙述了勾股算法,还有许多属于分数乘、除法的实际问题,演算水平相当高。中国数学史1、盖天说n西汉时期关于宇宙结构的学说。给出四分历法(用润月调节四时气候的阴历历法),一个回归年为365又1/4天。 2、分数运算中国数学史3、勾股定理特例(西周初公元前世纪):32+42=52n一般形式(公元前67世纪):勾2+股2=弦2n最早的证明n公元世纪赵爽(三国时期)在注周髀算经时作“弦图”证明,运用了“出入相补原理”(割补法)进行证明中国数学史n九章算术集中了过去和当时的几乎全部

9、数学知识,以应用问题解法集成的题例编成,成书于公元前1世纪前,是先秦至西汉中叶期间编篡。共246个问题,分九章。n(一)方田章 讲平面图形的面积和边界的计算,还涉及分数及其算法。三、 九章算术方田术曰:广从步数相乘得积步(“广”即“长”,“从”即“宽”)1、面积计算中国数学史n如图,CD为高,取AD、BD中点E、F,则面积,n 注:证明可推广到一般三角形 圭田术曰:半广以乘正从刘徽注:半广者,以盈补虚得圭田也ABGCHEFD中国数学史邪田术曰:并两邪以半者,以乘正从者广 刘徽注:并而半之者,以盈补虚也如图,求直角梯形的面积中国数学史圆田术曰:半周乘半径者也 刘徽注:割之弥细,所失弥少,割之又割

10、,以至于不可割,则与圆合体而无所失也n见P792、分数理论实如法而一,不满法者,以法命之约分术曰:可半者半之,不可半者,由量分母之数,以少减多,更相减损,求其等也,以等数约之。齐同术 刘徽注:凡母互乘谓之齐,群母相乘谓之同,母同则子通 中国数学史(二)粟米章 讲各种谷物之间的换算,主要用“今有术”,即按今有数据比例进行计算。率:交换中等价物的数量粟米之法:粟米五十,粝米三十,橰米二十七率即一组相关变量x1,xn;x1xn成立线性关系:xi=kxi则称每一个xi为一个率今有术:所求数(所有数所求率)/所有率中国数学史例:(本章第一问)今有粟一斗,欲为粝,问得几何?答曰:为粝米六升术曰:以所有数乘

11、所求率为实,以所有率而法,实如法而一。注:“今有术”变形:所求数/所求率所有数/所有率即四项比例算法,此法传到欧洲称:“黄金算法”。所有术是解决比例问题的基础理论,刘徽称“此都术也”中国数学史(三)衰分章 衰(cui)即有递减之意。衰分是按一定比率分配的意思。(四)少广章 截多补少之意,本章讲由田亩的面积、 长方体的体积或球的体积出发,求田亩的边长、长方体的边长或球径长。因此有世界上最早的多位数开方的法则。中国数学史n(五)商功章:商即商量、度量之意,商功就是度量土土石方等的方法。本章讲多种体积算法。n(六)均输章:讲合理运输的数学问题,还有行程、抽税、按等级分物等问题,内容较复杂,涉及比例、

12、复比、等差级数等知识。n(七)盈不足章:讲用过剩(盈)与不足近似值逐步逼近求解方程的根,称为“盈不足术”,又称试位法或双设法。中世纪传入欧洲后称为“契丹算法”,现称弦位法。n(八)方程章:讲线性方程组的消元法,同时还引进了负数,两者长期在世界上是首屈一指的。n(九)句股章:即勾股,讨论用勾股定理解应用问题。中国数学史n三国以前,我国数学要籍,首推九章算术。刘徽在数学上的贡献,主要在其九章算术注一书。隋书卷16律历上载:“魏陈留王景元四年刘徽注九章”。是知九章算术注完成于景元四年(263年)。隋书卷34经籍志三有九章算术十卷、九章重差图一卷,均注明系刘徽撰。 后九章重差图失传,唐人将九章算术注内

13、有关数学用于测量的重差一卷取出,独成一书,因其中第一个问题系测量海岛,故改名为海岛算经。刘徽这两个著作是我国数学史上宝贵的文献,即在世界数学史上也有一定的地位。今述其主要贡献如下:四、刘徽的主要数学成就中国数学史n刘徽九章注和九章算术与古希腊的几何原本相辉映,各具特色。n主要成就:n1、割圆术:圆周率精确到二位小数即3.14,称为“徽率”, 值是否正确,直接关系到天文历法、度量衡、水利工程和土木建筑等方面的应用,所以精确计算值,是数学上的一个重要任务。 公元前三世纪希腊数学家阿基米得曾提出圆周长于内接圆内多边形而小于圆外切多边形周长,算出了的数值。但阿基米得是用的归谬法,他避开了无穷小和极限,

14、而刘徽应用了极限的概念,且只用圆内接正多边形的面积计算,而省去了计算圆外切正多边形的面积,从而收到了事半功倍之效。中国数学史n2、体积理论:出入相补原理n (1)阳马术:运用极限法n (2)球体积:创立了新的图形“牟合方盖” (正方体内两个圆柱垂直相交部分)中国数学史阳马术:运用极限法n即求锥体的体积abcV锥体=1/3abc中国数学史阳马鳖渐堵1个长方体2个小渐堵2个小阳马1个长方体2个小渐堵2个小鳖中国数学史阳马鳖1个长方体2个小渐堵2个小阳马2个小渐堵2个小鳖1个长方体2个小渐堵2个小渐堵大渐堵1个长方体体积+4个小渐堵体积=3/4大渐堵的体积2个小阳马+2个小鳖= 1/4大渐堵的体积中

15、国数学史n阳马体积记为Y,鳖体积记为Bn小阳马体积记为Y1,小鳖体积记为B1n则Y= Y1+ 2Y1 ,B= B1 + 2 B1 1个长方体2个小渐堵2个小渐堵1个长方体体积+4个小渐堵体积=3/4大渐堵的体积2个小阳马+2个小鳖= 1/4大渐堵的体积体积记为Y1体积记为B1继续剖分小阳马和小鳖,在第n次剖分后有Y=2i-1Yi+ 2nYn ,B= 2i-1 Bi + 2n Bn中国数学史n2i-1Yi:2i-1 Bi = 2:1n设原渐堵体积为1n则Un= 2nYn + 2n Bn=2n-12(Yn+Bn)n = 2 n-1 (1/4) (1/8) n-1 =1/4n 0继续剖分小阳马和小鳖

16、,在第n次剖分后有Y=2i-1Yi+ 2nYn ,B= 2i-1 Bi + 2n BnY:B= 2i-1Yi:2i-1 Bi = 2:1阳马鳖中国数学史n关于体积计算的刘徽定理一般地说,柱体或多面体的体积计算较比容易解决,而圆锥、圆台之类的体积就难以求得。刘徽经过苦心思索,终于找到了一条途径,他分别做圆锥的外切正方锥和圆台的外切正方台,结果发现:“求圆亭(圆台)之积,亦犹方幂中求圆幂,圆面积与其外切正方形的面积之比为4,由此他推得:圆台(锥)的体积与其外切正方台(锥)的体积之比,也是4。中国数学史五、祖冲之与祖暅祖冲之,字文远(公元429500年)。祖冲之的主要成就在数学、天文历法和机械制造三

17、个领域。此外祖冲之精通音律,擅长下棋,还写有小说述异记。祖冲之著述很多,但大多都已失传。研究过易经、老子、庄子等书。祖冲之是一位少有的博学多才的人物。中国数学史n在天文历法方面,认为国家颁行的何承天的元嘉历不够精确,另制大明历n在机械制造方面,受命制造指南车,车成后测试,“其制甚精,百屈于回,未尝移废”,意即效果良好,还制造过水碓磨、千里船、计时器等器械。中国数学史n在数学方面,著作早已失传,其成就列入正史可证明。n1、圆周率精确到3.1415926 3.1415927n 密率355/113, 约率22/7n2、球体积的推导:与其子祖暅一起利用“祖氏原理”求出牟合方盖体积。祖氏原理:幂势既同,

18、则积不容异注:在西方,直到1635年意大利数学家卡瓦列利才有了与祖氏父子类似的思想,比祖氏父子已晚了一千一百多年,比刘徽更迟了一千三百多年。中国数学史1/8牟合方盖图1图2图3图4中国数学史图1图2图3图4图5ABCDSQRPhrT中国数学史ASQP+CTQR+BSQT=h2 =倒锥体的横截面S的面积图1图5ABCDSQRPhrThS1/8牟合方盖的体积=1/8正方体的体积倒锥体的体积 =r3-1/3r3 =2/3r3V球:V牟合方盖= :4 4V球= /4V/4V牟合方盖牟合方盖= /4*16/3r= /4*16/3r3 3=4/3 r=4/3 r3 3中国数学史思考:利用下图求球体积中国数学史

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号