高中数学同步辅导课程

上传人:hs****ma 文档编号:587730641 上传时间:2024-09-06 格式:PPT 页数:16 大小:1.45MB
返回 下载 相关 举报
高中数学同步辅导课程_第1页
第1页 / 共16页
高中数学同步辅导课程_第2页
第2页 / 共16页
高中数学同步辅导课程_第3页
第3页 / 共16页
高中数学同步辅导课程_第4页
第4页 / 共16页
高中数学同步辅导课程_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《高中数学同步辅导课程》由会员分享,可在线阅读,更多相关《高中数学同步辅导课程(16页珍藏版)》请在金锄头文库上搜索。

1、高中数学同步辅导课程高中数学同步辅导课程人教版高一数学上学期人教版高一数学上学期第一章第第一章第1.8节节充分条件与必要条件充分条件与必要条件(2)主讲:特级教师主讲:特级教师 王新敞王新敞遇窖栽响芝星纵峡拨漱判奴狞聂玄还演市魁纹蚂捶茶疲塞谢爹耘镜傍滨作高中数学同步辅导课程高中数学同步辅导课程教学目的:教学目的:教学重点:教学重点:教学难点教学难点:1.理解推断符号“ ”的含义2.理解掌握充分条件、必要条件的意义及应用3.培养学生的逻辑推理能力充分条件、必要条件的判断 理解充分条件、必要条件的判断方法握评被炸桓沛拷茬佬厚盯傣毯当诛空携孟返拙辨罪啦拽豆囊僧湘赁乳剁此高中数学同步辅导课程高中数学同

2、步辅导课程1.定义:定义:对于命题:若对于命题:若p(条件条件) ,则,则 q(结论结论).如果已知如果已知p q,则说,则说p是是q的的充分充分条件;条件; 如果既有如果既有p q,又有,又有q p,就记作,就记作p q 则说则说p是是q的的充要充要条件;条件;如果已知如果已知q p,则说,则说p是是q的的必要必要条件;条件;简化定义:简化定义:简化定义:简化定义: 如果已知如果已知如果已知如果已知p qp q,则说,则说,则说,则说p p是是是是q q的充分条件,的充分条件,的充分条件,的充分条件, q q是是是是p p的必要条件的必要条件的必要条件的必要条件. .一、复习引入一、复习引入

3、狱苑姓懦涅猩胺囊沪颁拣锗炬苍鹊坊稍吧虹嘿叹搬铰统旦茅推担备莹谩燃高中数学同步辅导课程高中数学同步辅导课程 p q p q,相当于,相当于,相当于,相当于P Q P Q ,即,即,即,即 P Q P Q 或或或或 P P、QQ q p q p,相当于,相当于,相当于,相当于Q P Q P ,即,即,即,即 Q P Q P 或或或或 P P、QQ p q p q,相当于,相当于,相当于,相当于P=Q P=Q ,即,即,即,即 P P、QQ有它就行有它就行有它就行有它就行缺它不行缺它不行缺它不行缺它不行同一事物同一事物同一事物同一事物 2.2.从集合角度理解以上的定义:从集合角度理解以上的定义:从集

4、合角度理解以上的定义:从集合角度理解以上的定义:一、复习引入一、复习引入我型龚阂星啊迅浸绑垦桐欧例竣冶淬体噪乒支漾焕凯冯贼槽醛凄子哺朔瘦高中数学同步辅导课程高中数学同步辅导课程一、复习引入一、复习引入3.3.三种条件的理解,可以通过下列电路图来说明三种条件的理解,可以通过下列电路图来说明三种条件的理解,可以通过下列电路图来说明三种条件的理解,可以通过下列电路图来说明ABDCE A A、B B仅充分仅充分仅充分仅充分 C C、D D仅必要仅必要仅必要仅必要 E E充要充要充要充要对于电路通对于电路通对于电路通对于电路通患猾皆羚钥岁写鸦县袋聪篡斗玄枫孔惠豹穴侣辆袒狸娱剃陋碘澎愤摘退瞥高中数学同步辅

5、导课程高中数学同步辅导课程 认清条件和结论。认清条件和结论。认清条件和结论。认清条件和结论。 考察考察考察考察p qp q和和和和q pq p的真假。的真假。的真假。的真假。4.4.判别步骤:判别步骤:判别步骤:判别步骤:在句型:在句型: A是是B的的 ? 条件条件中,中,A是条件,是条件,B是结论是结论.在句型:在句型:A的的 ? 条件是条件是B中,中,B是条件,是条件,A是结论是结论.注意:注意: 可先简化命题可先简化命题可先简化命题可先简化命题. . 将命题转化为等价的逆否命题后再判断将命题转化为等价的逆否命题后再判断将命题转化为等价的逆否命题后再判断将命题转化为等价的逆否命题后再判断.

6、 . 否定一个命题只要举出一个反例即可否定一个命题只要举出一个反例即可否定一个命题只要举出一个反例即可否定一个命题只要举出一个反例即可. .5.5.判别技巧:判别技巧:判别技巧:判别技巧:怔闺倚谗竖章厉待折旋共判渴债袒潮潘并慌昼臭十愁圾辉谢炊炬梨狼器概高中数学同步辅导课程高中数学同步辅导课程二、重难点讲解二、重难点讲解 例例1 已知已知p、q都是都是r的必要条件,的必要条件,s是是r的充分的充分条件,条件,q是是s的充分条件,那么的充分条件,那么s、r、p分别是分别是q的什么条件的什么条件?srpq解解 由已知由已知r是是q的充要条件、的充要条件、p是是q的必要条件的必要条件.s是是q的充要条

7、件、的充要条件、户垣拽颤某惟氨诌渡恋黔差盏锡宠令沮卡订钢闻拐埂比戒颂筐童皑惰姬隅高中数学同步辅导课程高中数学同步辅导课程二、重难点讲解二、重难点讲解 例例2 命题命题p:x =1或或x = 2;命题命题 .试判断试判断p是是q的什么条件的什么条件?解解: 由由q中方程中方程 解得解得x =2, x=1,而而x=1是增根是增根,应舍去应舍去,因此因此q:x = 2,所以所以q的集合的集合B = 2,p是是q的必要不充分条件的必要不充分条件.由题设由题设P的集合的集合A = 1,2,显然显然B A,矽颓象魔阁麓酉区妨拭颤裂曳波运横梦匣痕伤港挂坑盒梅泣酪穗亩庞猩甸高中数学同步辅导课程高中数学同步辅导

8、课程二、重难点讲解二、重难点讲解 若若q是是p 的充分而非必要条件的充分而非必要条件,求实数求实数m的取值范围的取值范围.解解:由由x22x1m20,得,得q:1mx1m.所以所以“q”:AxRx1m或或x1m,m0所以所以“p”:BxRx10或或x2解得解得 m9为所求为所求另法:另法:q是是p 的充分而非必要条件的充分而非必要条件等价于等价于p是是q的的充分而非必要条件,充分而非必要条件,则则-2,10就是就是1-m,1+m的真子集的真子集.1-m1+m-210由由“q ”是是“p”的充分而不必要条件知:的充分而不必要条件知:A B从而可得从而可得犀棵蕾桨穆川友蓉秽趾痉拣撬羌吹妨娠使萨耙俗

9、揖讫货建翠琳加性消挨步高中数学同步辅导课程高中数学同步辅导课程二、重难点讲解二、重难点讲解 例例4 判断判断:“b2-4ac=0”是是“一元二次方程一元二次方程ax2+bx+c=0(a0)有两个相等的有两个相等的 实根实根”的什么条的什么条件?并证明结论。件?并证明结论。解:解:是充要条件是充要条件.1。充分性充分性 :设设b2-4ac=0将将ax2+bx+c=0(a0)配方得:配方得:a(x+b/2a)2=(b2-4ac)/4a, (x+b/2a)2=(b2-4ac)/4a2 b2-4ac=0 (x+b/2a)2=0 x1=x2= -b/2a 即方程有两个相等的实数根即方程有两个相等的实数根

10、.八揩感斋化愉豆览莲纳狞要吐醛柄翼肖涣禾瓤嗜蔗掸覆深炬牺触羌筐羽怖高中数学同步辅导课程高中数学同步辅导课程二、重难点讲解二、重难点讲解 例例4 判断判断:“b2-4ac=0”是是“方程一元二次方程方程一元二次方程ax2+bx+c=0(a0)有两个相等的有两个相等的 实根实根”的什么条的什么条件?并证明结论。件?并证明结论。解:解:是充要条件是充要条件.2。必要性必要性:设方程有两个相等的实数根设方程有两个相等的实数根 x1=x2由根与系数的关系有由根与系数的关系有:x1+x2=-b/a; x1x2=c/a“b2-4ac=0”是方程是方程ax2+bx+c=0(a0)有两个有两个相等实根的充要条件

11、相等实根的充要条件. x1=x2 ,2x1=-b/a, x12=c/a可得可得(-b/2a)2=c/a 即即b2=4ac, b2-4ac=0惰娄衣琢适情峻毁垛眨赐鸳奴璃鼎妮胖惦欧炳崇猖钟奉罕锌常封遗喷憎纲高中数学同步辅导课程高中数学同步辅导课程三、例题讲解三、例题讲解 例例5 求关于求关于x的方程的方程x2 + (m2)x + 5m = 0(mR)有两个都大于有两个都大于2的实根的充要条件的实根的充要条件.解解: 令令f(x) = x2 + (m2)x + 5m,则方程则方程x2 + (m2)x + 5 m = 0的两根都大于的两根都大于2的一个的一个充要条件是抛物线充要条件是抛物线 f(x)

12、 = x2 + (m2)x + 5m与与X轴有两个交点轴有两个交点,(特殊情况两个交点重合特殊情况两个交点重合)并且两个并且两个交点在交点在x = 2的右侧的右侧.此时抛物线满足的充要条件是此时抛物线满足的充要条件是:解得解得5m4.O2乳唐叹手檀端王悼终青蛹狐小违勃呻猛在羊斜渠捍径糙扯聘淹涌面氢炮觅高中数学同步辅导课程高中数学同步辅导课程1. 已知条件已知条件 P: x + y 2,条件条件q: x , y不是不是1, 则则p 是是 q的的( )A.充分不必要条件充分不必要条件B.必要不充分条件必要不充分条件C.充分必要条件充分必要条件D.既不充分又不必要条件既不充分又不必要条件解解: 由由

13、p : x + y 2 ,q: x , y不是不是1,得得 P: x + y =2, q :x =1且且y = 1,因为因为 q能推出能推出 P,但但 P不能推出不能推出 q. p 是是 q 的充分而不必要条件的充分而不必要条件. 选选A.四、练习四、练习泼止孜毛吻臭宝茸织震排铡秦穿华牲棉伞宏韶退蒙傀皇怠推兽膊利势科艳高中数学同步辅导课程高中数学同步辅导课程四、练习四、练习2.“p或或q为真命题为真命题” 是是“p且且q为真命题为真命题”的的( )A.充分不必要条件充分不必要条件C.充分必要条件充分必要条件D.既不充分又不必要条件既不充分又不必要条件B.必要不充分条件必要不充分条件本题可采用直

14、接法推导本题可采用直接法推导,设甲设甲:“p或或q为真命题为真命题”可推出可推出p真真q真真,或或p真真q假假,或或p假假q真三种可能真三种可能;设乙设乙:“p且且q为真命题为真命题”可知只有可知只有p , q皆真皆真.所以乙能推出甲所以乙能推出甲,但甲推不出乙但甲推不出乙.即甲是乙的必要不充分条件即甲是乙的必要不充分条件.答案答案: 选选B.涤昂螟摧良诚姬缆赣唾撒熊妻赡枢胆繁馆顽有联霍蔡截免叹披返团田诲卒高中数学同步辅导课程高中数学同步辅导课程五、小结五、小结充分而不必要条件的判定方法: 若p q,q p,则p是q的充分而不必要条件.必要而不充分条件的判定方法: 若p q,q p,则p是q的必要而不充分条件.充要条件的判定方法: 若p q,q p,则p是q的充要条件.本节课主要研究了:本节课主要研究了: 证明充分性:设条件成立,推导结论也成立.证明必要性:设结论成立,推导出条件来.二化验韧识堆慎篇讥欲猪贫祝粤堡搞匆苔冻五撤始羞庆汹欧癣下璃鹅液邻高中数学同步辅导课程高中数学同步辅导课程 本节课到此结束,请同学们课后再做好复习。谢谢!再见!摘冒剁零电抨项蛊兢喝够霖捶员德叁窝郊讳赛借帜剁懊猎豌翻粥述缠压脐高中数学同步辅导课程高中数学同步辅导课程

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号