空间几何体的结构课件PPT课件

上传人:cn****1 文档编号:587633037 上传时间:2024-09-06 格式:PPT 页数:46 大小:3.05MB
返回 下载 相关 举报
空间几何体的结构课件PPT课件_第1页
第1页 / 共46页
空间几何体的结构课件PPT课件_第2页
第2页 / 共46页
空间几何体的结构课件PPT课件_第3页
第3页 / 共46页
空间几何体的结构课件PPT课件_第4页
第4页 / 共46页
空间几何体的结构课件PPT课件_第5页
第5页 / 共46页
点击查看更多>>
资源描述

《空间几何体的结构课件PPT课件》由会员分享,可在线阅读,更多相关《空间几何体的结构课件PPT课件(46页珍藏版)》请在金锄头文库上搜索。

1、形状与大小如果我们只考虑物体的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。空间几何体你能把这些几何体分成两类么?多面体: 假设干个平面多边形围成的几何体 面-围成多面体的各个多边形 棱-相邻两个面的公共边 顶点-棱与棱的公共点旋转体: 由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体 注:棱柱与圆柱统称为柱体1.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱有两个面互相平行其余各面都是四边形每相邻两个四边形的公共边互相平行1、棱柱DABCEFFAEDBCDABCEFFAEDBC

2、侧棱侧面底面顶点棱柱的表示法:用表示底面的各顶点的字母表示。 如:六棱柱ABCDEF-ABCDEF 1、两个互相平行的面叫棱柱的底面。 2、其余各面叫棱柱的侧面。 3、相邻侧面的公共边叫侧棱。 4、侧面与底面的公共顶点叫 棱柱的顶点。 底面是三角形、四边形、五边形 的棱柱分别叫三棱柱 、四棱柱、五棱 柱 如何判断一个多面体是不是棱柱?有两个面互相平行底面其余各面都是四边形侧面每相邻两个侧面的公共边侧棱都互相平行棱柱思考?长方体按如图截去一角后所得的两局部还是棱柱吗?ABCDABCD探究问题 1: 有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?定义:1、有两个面互相平行,2、其余各面

3、都是四边形,3、每相邻两个四边形的公共边 都互相平行。探究问题 2:2.棱锥的结构特征:有一个面是多边形 其余各面都是 有一个公共顶点的三角形。 棱锥的分类: 按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、棱锥的表示法:棱锥S-ABCDDABCPQDACBS四棱锥:S-ABCD 其他的三角形面没有共一个顶点练习:以下几何体是不是棱锥,为什么?3.棱台的结构特征ABCDABCD用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的局部是棱台.上底面侧面侧棱下底面顶点棱台的表示:用表示底面的各顶点的字母表示。 如:棱台ABCD-ABCD底面是三角形,四边形,五边形-的棱台分别叫三棱台,四棱台,

4、五棱台-下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。侧面:原棱锥的侧面也叫做棱台的侧面截后剩余局部。侧棱:原棱锥的侧棱也叫棱台的侧棱截后剩余局部。顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。练习:以下几何体是不是棱台,为什么? 不能复原为棱锥侧棱延长线不交于一点探究问题 3: 两个底面平行且相似,其余各面都是梯形的几何体一定是棱台吗?注意:1截面与底面平行 ABCDABCDS2通过延长侧棱,能够复原为棱锥的才是棱台四棱台ABCD-ABCD内容小结: 2有两个面_,其余各面都是_,并且_ 由这些面所围成的多面体叫做棱柱 4用一个_去截棱锥,底面与截面之间的局部叫

5、做棱台.截面与底面_. 3有一个面是_;其余各面是_形成的封闭几何体叫棱锥1由_围成的几何体叫做多面体;由平面图形绕所在平面内的一条直线_形成的封闭几何体叫旋转体1.下面几何体中哪些是棱柱?稳固习题: 2.如图,螺丝杆头部是什么几何体?它有几对平行平面? 能作为底面的有几对? ADCBB4 长方体AC1中,AB=3,BC=2,BB1=1,由A到C1在长方体外表上的最短距离是多少?A1DACBD1B1C1AA1B1BC1D1CC1B1A1BADD1C1A1AB15、判断以下几个命题中的对错有两个面平行,其余各面都是四边形的几何体叫棱柱 有两个面平行,其余各面都是平行四边行的几何体叫棱柱 有一个面

6、是多边形,其余各面都是三角形的几何体叫棱锥 两个面平行且相似,其余各面都是梯形的多面体是棱台 有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台 棱台各侧棱的延长线交于一点 各侧面都是正方形的四棱柱一定是正方体 菱形SABCDABCD如图,正四棱锥S-ABCD被一平行于底面的平面ABCD所截,其中A为SA的中点.假设四棱锥的底边AB=4,求截得的正棱台ABCD-ABCD的上底面面积和下底面的面积之比。 例6 一个三棱柱可以分割成几个三棱锥?ACA1BB1C1ACBC1AA1BC1A1BB1C1BAAOBO轴底面侧面母线 注:棱柱与圆柱统称为柱体 如果我们只考虑物体占用空间局部的形状和大小,

7、而不 考虑其它因素,那么由这些 物体抽象出来的空间图形,就叫做空间几何体。12345678109DABCEFFAEDBCDABCEFFAEDBC侧棱侧面底面顶点有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱1.棱柱的结构特征:棱柱的表示:用表示底面的各顶点的字母表示。 如:棱柱ABCDEF-ABCDEF顶点:侧面与底面的公共顶点叫做棱柱的 顶点。底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。侧面:棱柱中除底面的各个面。侧棱:相邻侧面的公共边叫做棱柱的侧棱。DABCEFFAEDBC思考1:倾斜后的几何体还是柱体吗?SABCD顶点侧面侧

8、棱底面2.棱锥的结构特征有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.侧棱:相邻侧面的公共边叫做棱锥的侧棱。棱锥可以表示为:棱锥S-ABCD底面是三角形,四边形,五边形-的棱锥分别叫三棱锥,四棱锥,五棱锥-底面:棱锥中的多边形面叫做棱锥的底面或底。侧面:有公共顶点的各个三角形面叫做棱锥的侧面顶点:各个侧面的公共顶点叫做棱锥的顶点。3.棱台的结构特征ABCDABCD用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的局部是棱台.上底面侧面侧棱下底面顶点棱台的表示:用表示底面的各顶点的字母表示。 如:棱台ABCD-ABCD底面是三角形,四边形,五边形-的棱台

9、分别叫三棱台,四棱台,五棱台-下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。侧面:原棱锥的侧面也叫做棱台的侧面截后剩余局部。侧棱:原棱锥的侧棱也叫棱台的侧棱截后剩余局部。顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。思考2:这是一个台体吗?BAAOBO轴底面侧面母线4.圆柱的结构特征 圆柱用表示它的轴的字母表示.如:圆柱SO以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。圆柱的轴:旋转轴叫做圆柱的轴。圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆的侧面。圆柱的底面:垂直于

10、轴的边旋转而成的圆面叫做圆柱的底面。注:棱柱与圆柱统称为柱体S顶点ABO底面轴侧面母线5.圆锥的结构特征: 以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。圆锥可以用它的轴来表示。如:圆锥SO轴:作为旋转轴的直角边叫做圆锥的轴。母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。顶点:作为旋转轴的直角边与斜边的交点侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。注:棱锥与圆锥统称为锥体6.圆台的结构特征OO用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的局部是圆台.AB圆台的轴,底面,侧面,母线

11、与圆锥相似注:棱台与圆台统称为台体。 7、球的结构特征以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。OABC直径球心半径:半圆的半径叫做球的半径。半 径球心:半圆的圆心叫做球的球 心。直径:半圆的直径叫做球的直径。球的表示:用球心字母表示如:球O 例1 如图,截面BCEF将长方体分割成两局部,这两局部是否为棱柱? ABCDA1B1C1D1EF理论迁移 例2 一个三棱柱可以分割成几个三棱锥?ACA1BB1C1ACBC1AA1BC1A1BB1C1例3、判断以下几个命题中的对错有两个面平行,其余各面都是四边形的几何体叫棱柱 有两个面平行,其余各面都是平行四边行的几何体叫棱柱 有

12、一个面是多边形,其余各面都是三角形的几何体叫棱锥 两个面平行且相似,其余各面都是梯形的多面体是棱台 有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台 棱台各侧棱的延长线交于一点 各侧面都是正方形的四棱柱一定是正方体 分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个 圆柱是两个不同的圆柱 以直角三角形的一直角边为轴旋转所得的旋转体是圆锥 以直角梯形的一腰为轴旋转所得的旋转体是圆台 圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径 例题 4 长方体AC1中,AB=3,BC=2,BB1=1,由A到C1在长方体外表上的最短距离是多少?A1DACBD1B1C1AA1

13、B1BC1D1CC1B1A1BADD1C1A1AB15.以下图中不可能围成正方体的是 ADCBB小结:棱锥棱柱圆锥圆柱圆台考一考:空间几何体多面体旋转体棱锥棱台棱柱圆台圆柱圆锥锥体台体柱体球棱台球结构特征结构特征棱柱棱柱棱锥棱锥棱台棱台 定义定义两个平面互相平行,两个平面互相平行,其余各面都是四边其余各面都是四边形,并且每相邻两形,并且每相邻两个四边形的公共边个四边形的公共边都平行,这些面围都平行,这些面围成的几何体称为棱成的几何体称为棱柱柱有一面为多边形,有一面为多边形,其余各面是有一其余各面是有一个公共顶点的三个公共顶点的三角形,这些面围角形,这些面围成的几何体叫做成的几何体叫做棱锥棱锥用

14、一个平行于棱锥用一个平行于棱锥底面的平面去截棱底面的平面去截棱锥,底面与截面之锥,底面与截面之间的部分这样的多间的部分这样的多面体叫做棱台面体叫做棱台底面底面两底面的全等的多两底面的全等的多边形边形多边形多边形两底面是相似的多两底面是相似的多边形边形侧面侧面平行四边形平行四边形三角形三角形梯形梯形侧棱侧棱平行且相等平行且相等相交于顶点相交于顶点延长线交于一点延长线交于一点平行于底平行于底面的平面面的平面与两底面是全等的与两底面是全等的多边形多边形与底面是相似的与底面是相似的多边形多边形与两底面是相似的与两底面是相似的多边形多边形过不相邻过不相邻两侧棱的两侧棱的截面截面平行四边形平行四边形三角形

15、三角形梯形梯形结构特征结构特征圆柱圆柱圆锥圆锥圆台圆台球球定义定义以矩形的一边以矩形的一边所在的直线为所在的直线为旋转轴,其余旋转轴,其余各边旋转而形各边旋转而形成的曲面所围成的曲面所围成的几何体叫成的几何体叫做圆柱做圆柱以直角三角形的以直角三角形的一条直角边位旋一条直角边位旋转轴,其余各边转轴,其余各边旋转而形成的曲旋转而形成的曲面所围成的几何面所围成的几何体叫做圆锥体叫做圆锥以直角梯形垂直以直角梯形垂直于底边的腰所在于底边的腰所在的直线为旋转轴,的直线为旋转轴,其余各边旋转而其余各边旋转而形成的曲面所围形成的曲面所围成的几何体叫做成的几何体叫做圆台圆台以半圆的直径所在以半圆的直径所在的直线

16、为旋转轴,的直线为旋转轴,将半圆旋转一周所将半圆旋转一周所形成的曲面称为球形成的曲面称为球面,球面所围成的面,球面所围成的几何体称为球体,几何体称为球体,简称球简称球底面底面两底面是平行两底面是平行且半径相等的且半径相等的圆圆圆圆两底面是平行但两底面是平行但半径不相等的圆半径不相等的圆无无侧面展开侧面展开图图矩形矩形扇形扇形扇环扇环不可展开不可展开母线母线平行且相等平行且相等相较于顶点相较于顶点延长线交于一点延长线交于一点无无平行于底平行于底面的截面面的截面与两底面是平与两底面是平行行且半径相等的且半径相等的圆圆平行于底面且平行于底面且半径不相等的圆半径不相等的圆与两底面是平行与两底面是平行且半径不相等的且半径不相等的圆圆球的任何截面都是球的任何截面都是圆圆轴截面轴截面矩形矩形等腰三角形等腰三角形等腰梯形等腰梯形圆圆多谢指导!作业:课本习题1.1 1-2,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号