《高中数学 2.3.12直线与平面垂直的判定课件 新人教A版必修2》由会员分享,可在线阅读,更多相关《高中数学 2.3.12直线与平面垂直的判定课件 新人教A版必修2(18页珍藏版)》请在金锄头文库上搜索。
1、教学目标:教学目标:1 1进一步掌握线面进一步掌握线面垂直的定义和判定定理;垂直的定义和判定定理;2 2掌握直线和平面所成的角的掌握直线和平面所成的角的概念概念, ,会求直线和平面所成的角会求直线和平面所成的角. .复习引入复习引入1 1直线与平面垂直的定义直线与平面垂直的定义如果直线如果直线l l与平面与平面的任意一条直线都垂直的任意一条直线都垂直,我,我们就说直线们就说直线l l与平面与平面互相垂直,记作互相垂直,记作ll. .2 2直线与平面垂直的判定定理直线与平面垂直的判定定理一条直线一条直线与一个平面内的两条相交直线都垂直与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。则该直
2、线与此平面垂直。3.3.作业讲评作业讲评:P67:P67页页练习第练习第1 1题题VABC引课引课我们知道我们知道, ,当直线和平面垂直时当直线和平面垂直时, ,该直线叫做平面该直线叫做平面的垂线。如果直线和平面不垂直的垂线。如果直线和平面不垂直, ,是不是也该给它是不是也该给它取个名字呢取个名字呢? ?此时又该如何刻画直线和平面的这种此时又该如何刻画直线和平面的这种关系呢关系呢? ?如图如图, ,若一条直线若一条直线PAPA和一个和一个平面平面相交相交, ,但不垂直但不垂直, ,那么那么这条直线就叫做这个平面的这条直线就叫做这个平面的斜线斜线, ,斜线和平面的交点斜线和平面的交点A A叫叫做
3、斜足。做斜足。PA斜足斜足斜线斜线如图如图, ,过斜线上斜足以外的过斜线上斜足以外的一点向平面引垂线一点向平面引垂线PO,PO,过垂过垂足足O O和斜足和斜足A A的直线的直线AOAO叫做斜叫做斜线在这个平面上的射影线在这个平面上的射影. .平平面的一条斜线和它在平面上面的一条斜线和它在平面上的射影所成的锐角的射影所成的锐角, ,叫做这叫做这条直线和这个平面所成的角条直线和这个平面所成的角。斜线斜线斜足斜足射影射影垂足垂足垂线垂线一条直线垂直于平面一条直线垂直于平面, ,我们说它所成的我们说它所成的角是直角;一条直线和平面平行角是直角;一条直线和平面平行, ,或在或在平面内平面内, ,我们说它
4、所成的角是我们说它所成的角是0 00 0的角。的角。规定规定:想一想想一想:直线与平面所成的角直线与平面所成的角的取值范围是什么的取值范围是什么?A A1 1B B1 1C C1 1D D1 1A AB BC CD D例例1 1、如图,正方体、如图,正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,求中,求(1 1)直线)直线A A1 1B B和平面和平面BCCBCC1 1B B1 1所成的角。所成的角。(2 2)直线)直线A A1 1B B和平面和平面A A1 1B B1 1CDCD所成的角。所成的角。O例题示范例题示范, ,巩固新知巩固新知分析分析: :找出直线找
5、出直线A A1 1B B在平面在平面BCCBCC1 1B B1 1和平面和平面A A1 1B B1 1CDCD内的射内的射影影, ,就可以求出就可以求出A A1 1B B和平面和平面BCCBCC1 1B B1 1和平面和平面A A1 1B B1 1CDCD所成的所成的角。角。阅读教科书阅读教科书P67上的解答过程上的解答过程巩固练习巩固练习1.判断下列说法是否正确判断下列说法是否正确(1)两条平行直线在同一平面内的射影)两条平行直线在同一平面内的射影一定是平行直线一定是平行直线()(2)两条相交直线在同一平面内的射影)两条相交直线在同一平面内的射影一定是相交直线一定是相交直线()(3)两条异面
6、直线在同一平面内的射影)两条异面直线在同一平面内的射影要么是平行直线,要么是相交直线要么是平行直线,要么是相交直线()(4)若斜线段长相等,则它们在平面内)若斜线段长相等,则它们在平面内的射影长也相等的射影长也相等()2.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)AB1在面在面BB1D1D中的射影中的射影(2)AB1在面在面A1B1CD中的射影中的射影(3)AB1在面在面CDD1C1中的射影中的射影A1D1C1B1ADCB巩固练习巩固练习2.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)AB1在面在面BB1D1D中的射影中的射影(2)AB1在
7、面在面A1B1CD中的射影中的射影(3)AB1在面在面CDD1C1中的射影中的射影A1D1C1B1ADCBO线段线段B1O巩固练习巩固练习2.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)AB1在面在面BB1D1D中的射影中的射影(2)AB1在面在面A1B1CD中的射影中的射影(3)AB1在面在面CDD1C1中的射影中的射影A1D1C1B1ADCBE线段线段B1E巩固练习巩固练习2.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)AB1在面在面BB1D1D中的射影中的射影(2)AB1在面在面A1B1CD中的射影中的射影(3)AB1在面在面CDD1C
8、1中的射影中的射影A1D1C1B1ADCB线段线段C1D巩固练习巩固练习3.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)A1C1与面与面ABCD所成的角所成的角(2) A1C1与面与面BB1D1D所成的角所成的角(3) A1C1与面与面BB1C1C所成的角所成的角(4)A1C1与面与面ABC1D1所成的角所成的角A1D1C1B1ADCB0o巩固练习巩固练习3.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)A1C1与面与面ABCD所成的角所成的角(2) A1C1与面与面BB1D1D所成的角所成的角(3) A1C1与面与面BB1C1C所成的角所成的
9、角(4)A1C1与面与面ABC1D1所成的角所成的角A1D1C1B1ADCB90o巩固练习巩固练习3.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)A1C1与面与面ABCD所成的角所成的角(2) A1C1与面与面BB1D1D所成的角所成的角(3) A1C1与面与面BB1C1C所成的角所成的角(4)A1C1与面与面ABC1D1所成的角所成的角A1D1C1B1ADCB45o巩固练习巩固练习3.如图:正方体如图:正方体ABCD-A1B1C1D1中,求中,求:(1)A1C1与面与面ABCD所成的角所成的角(2) A1C1与面与面BB1D1D所成的角所成的角(3) A1C1与面与
10、面BB1C1C所成的角所成的角(4)A1C1与面与面ABC1D1所成的角所成的角A1D1C1B1ADCBE30o巩固练习巩固练习归纳小结归纳小结1 1直线与平面垂直的概念直线与平面垂直的概念(1 1)利用定义;)利用定义;(2 2)利用判定定理)利用判定定理3 3数学思想方法:转化的思想数学思想方法:转化的思想空间问题空间问题平面问题平面问题3 3直线与平面垂直的判定直线与平面垂直的判定线线垂直线线垂直线面垂直线面垂直垂直于平面内任意一条直线垂直于平面内任意一条直线2. 2. 线面角的概念及范围线面角的概念及范围作业布置作业布置作业作业:P74:P74A A组组9 9题题,B,B组组4 4题题