《武汉纺织大学物理学习指导答案上》由会员分享,可在线阅读,更多相关《武汉纺织大学物理学习指导答案上(56页珍藏版)》请在金锄头文库上搜索。
1、一、选择题一、选择题 1. B 2. CD 3. A 4. D 5. B 6. D 7. C 8. C 9. C 10. D 二、填空题二、填空题3. xt38t628 ;x0628 m;v08 m/s 8. v=ul/h10. t1 s;s1.5 m;0.5 rad 第一章第一章 质点运动学质点运动学一、选择题一、选择题 1D 2E 3D 4D 5C 6D 7C 8A 9A 二、填空题二、填空题1. 3. 8. 第二章第二章 牛顿定律牛顿定律; | |-一、选择题一、选择题1AE 2C 3C 4B 5B 6B 7A 8A 9C 10.D二、填空题二、填空题1 2. 向右 3. 24. 5.
2、12J 6. mgl/50; 7. 8. 第三章第三章 动量守恒定律和能量守恒定律动量守恒定律和能量守恒定律 F0R;3-4 已知已知3-4 解:设解:设A A、B B两船原有的速度分别以两船原有的速度分别以 、 表示,传表示,传递重物后船的速度分别以递重物后船的速度分别以 、 表示,被搬运重物的质表示,被搬运重物的质量以量以 表示。分别对上述系统表示。分别对上述系统I I、IIII应用动量守恒定律,应用动量守恒定律,则有则有: :由题意知由题意知 , 代入数据后,可解得:代入数据后,可解得:3-7 A3-7 A、B B两船在平静的湖面上平行逆向航行,当两船擦肩相遇两船在平静的湖面上平行逆向航
3、行,当两船擦肩相遇时,两船各自向对方平稳地传递时,两船各自向对方平稳地传递50kg50kg的重物,结果是的重物,结果是A A船停船停了下了下来,而来,而B B船以船以3.4 3.4 的速度继续向前驶去。的速度继续向前驶去。A A、B B两船原有质量两船原有质量分别为分别为 和和 ,求在传递重物前两船的速度。,求在传递重物前两船的速度。(忽略水对船的阻力。)(忽略水对船的阻力。) 也可以选择不同的系统,例如把也可以选择不同的系统,例如把A、B两船两船(包括传递的包括传递的物体在内物体在内)视为系统,同样能满足动量守恒,也可列出相视为系统,同样能满足动量守恒,也可列出相对应的方程求解。对应的方程求
4、解。3-143-28则有:则有:3-32一、选择题一、选择题1C 2. B 3. C 4. D 5. A 6. A 7. D 8. C 9. C 10. A二、填空题二、填空题1. 3. 刚体绕定轴转动惯性大小的量度;Ir2dm;刚体的几何形状;体密度;转轴位置 8. 0.4 rads1 第四章第四章 刚体的转动刚体的转动; 2. 78.5 rads;3.14 m/s2 ; 6.16103 m/s2 6. LI;M0 5. 3g/24. 3 mL2/4;mgL/2;2g/3L 9. 25.8 rads 7. L4.0104 kgm2/s;Ek8.0106 J 10. 6 rad/s;3 课后练
5、习题选择题解答:课后练习题选择题解答: 分析:分析:由于空气的阻力矩与角速度成正由于空气的阻力矩与角速度成正比,由转动定律可知转动是变角加速度比,由转动定律可知转动是变角加速度转动,须从角加速度和角速度的定义出转动,须从角加速度和角速度的定义出发,通过积分的方法求解发,通过积分的方法求解。4-3 如图示,一通风机的转动部分以初角速度如图示,一通风机的转动部分以初角速度 0 0绕其轴转动,绕其轴转动,空气的阻力矩与角速度成正比,比例系数空气的阻力矩与角速度成正比,比例系数C C为一常量。若转动部为一常量。若转动部分对其轴的转动惯量为分对其轴的转动惯量为J J,问,问(1)经过多小时间后其转动角速
6、)经过多小时间后其转动角速度减少为初角速度的一半?(度减少为初角速度的一半?(2)在此时间内共转过多少转?)在此时间内共转过多少转?解解 (1)通风机叶片所受的阻力矩)通风机叶片所受的阻力矩为为M=C,由转动定律得由转动定律得对上式分离变量,根据初始条件积分有对上式分离变量,根据初始条件积分有由于由于C和和J均为常量,得均为常量,得当角速度由当角速度由0 00 0/2/2时,转动所需的时间为时,转动所需的时间为在在时间时间t t内所转过的圈数为内所转过的圈数为(2)根据角速度定义和初始条件积分得(其中)根据角速度定义和初始条件积分得(其中 )分析:分析:对平动的物体和转动的组合轮分别对平动的物
7、体和转动的组合轮分别列出动力学方程,结合角加速度和线加速列出动力学方程,结合角加速度和线加速度之间的关系即可解得。度之间的关系即可解得。解解 取分别对两物体及组合轮作受力分析如下图取分别对两物体及组合轮作受力分析如下图4-11 质量为质量为m1和和m2的两物体的两物体A、B分别悬挂在如图所示的组合分别悬挂在如图所示的组合轮两端。设两轮的半径分别为轮两端。设两轮的半径分别为R和和r,两轮的转动惯量分别为,两轮的转动惯量分别为J1和和J2,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计。试求两物体的加速度和强绳的张力。也略去不计。试
8、求两物体的加速度和强绳的张力。m2m1BABAFT2FT1FNPP1P2FT2FT1a1a2根据质点的牛顿定律和刚体的转动定律,有根据质点的牛顿定律和刚体的转动定律,有BAFT2FT1FNPP1P2FT2FT1a1a2由角加速度和线加速度之间的关系,有由角加速度和线加速度之间的关系,有解上述方程组,可得解上述方程组,可得4-17 在光滑的水平面上有一木杆在光滑的水平面上有一木杆,其质量其质量m1=1.0kg,长长l=40cm,可绕通过其中点并与之垂直的轴转动可绕通过其中点并与之垂直的轴转动.一质量为一质量为m2=10g的子弹的子弹,以以v=2.0102ms-1的速度射入杆端的速度射入杆端,其方
9、其方向与杆及轴正交向与杆及轴正交.若子弹陷入杆中若子弹陷入杆中,试求所得到的角速度试求所得到的角速度.子弹与杆相互作用的瞬间子弹与杆相互作用的瞬间,可将子弹视为绕轴可将子弹视为绕轴的转动的转动,这样这样,子弹射入杆前的角速度可表示为子弹射入杆前的角速度可表示为,子弹陷入杆后子弹陷入杆后,它们将一起以角速度它们将一起以角速度转动转动,若将子弹和杆视为系统若将子弹和杆视为系统,因系统不受外力矩作因系统不受外力矩作用用,故系统的角动量守恒故系统的角动量守恒.由角动量守恒定律可由角动量守恒定律可解得杆的角速度解得杆的角速度.根据角动量守恒定理根据角动量守恒定理:式中式中 为子弹绕轴的转为子弹绕轴的转动
10、惯量动惯量, 为子弹在陷入杆前的为子弹在陷入杆前的角动量角动量, 为子弹在此刻绕轴为子弹在此刻绕轴的角速度的角速度, 为杆绕轴的为杆绕轴的转动惯量转动惯量.可得杆的角速度为可得杆的角速度为:4-23 一质量为一质量为1.12kg,长为长为1.0m的均匀细棒的均匀细棒,支点在棒支点在棒的上端点的上端点,开始时棒自由悬挂开始时棒自由悬挂,以以100N的力打击它的下的力打击它的下端点端点,打击它的下端点打击它的下端点,打击时间为打击时间为0.02s.(1)若打击前棒若打击前棒是静止的是静止的,求打击时其角动量的变化求打击时其角动量的变化;(2)棒的最大偏转棒的最大偏转角角.(1)由刚体的角动量定理得
11、由刚体的角动量定理得.(1)(2)取棒和地球为一系统取棒和地球为一系统,并选并选O处为重力势能零点处为重力势能零点.在转动在转动过程中过程中,系统的机械能守恒系统的机械能守恒,即即:.(2)由由(1)、(2)可得棒的偏转角度为可得棒的偏转角度为4-27如图如图4-27所示所示,一质量为一质量为m的小球由一绳索系着的小球由一绳索系着,以以角速度角速度0在无摩擦的水平面上在无摩擦的水平面上,作半径为作半径为r0的圆周运动的圆周运动.如果在绳的另一端作用一竖直向下的拉力如果在绳的另一端作用一竖直向下的拉力,使小球作半使小球作半径为径为r0/2的圆周运动的圆周运动.试求试求(1)小球新的角速度小球新的
12、角速度;(2)拉力拉力作的功作的功沿轴向的拉力对小球不产生力矩沿轴向的拉力对小球不产生力矩,因此因此,小球小球在水平面上转动的过程中不受外力矩作用在水平面上转动的过程中不受外力矩作用,其角速度应保持不变其角速度应保持不变.但是但是,外力改变了小球外力改变了小球圆周运动的半径圆周运动的半径,也改变了小球的转动惯量也改变了小球的转动惯量,从而改变了小球的角速度从而改变了小球的角速度.至于拉力所作的至于拉力所作的功功,可根据动能定理由小球动能的变化得到可根据动能定理由小球动能的变化得到.(1)根据分析根据分析,小球在转动的过小球在转动的过程中程中,角动量保持守恒角动量保持守恒,故有故有:(2)随着小
13、球转动角速度的增加随着小球转动角速度的增加,其转动动能也增加其转动动能也增加,这正这正是拉力作功的结果是拉力作功的结果,由转动的动能定理可得拉力的功为由转动的动能定理可得拉力的功为:式中式中 和和 分别分别 是小球在半是小球在半径为径为 r0和和r0/2时对轴的转动惯量时对轴的转动惯量,即即 和和 则则:4-28质量为质量为0.50kg,长为长为0.40m的均匀细棒的均匀细棒,可绕垂直于棒可绕垂直于棒的一端的水平轴转动的一端的水平轴转动,如将此棒放在水平位置如将此棒放在水平位置,然后任其然后任其落下落下,求求:(1)当棒转过当棒转过600时的角加速度和角速度时的角加速度和角速度;(2)下落下落
14、到竖直位置时的动能到竖直位置时的动能;(3)下落到竖直位置时的角速度。下落到竖直位置时的角速度。转动定律转动定律 是一瞬时关系式是一瞬时关系式,为求棒在为求棒在不同位置的角加速度不同位置的角加速度,只需确定棒所在位置的力只需确定棒所在位置的力矩就可求得矩就可求得.由于重力矩由于重力矩 是变是变力矩力矩,角加速度也是变化的角加速度也是变化的,因此因此,在求角速度时在求角速度时,就必须根据角加速度用积分的方法来计算就必须根据角加速度用积分的方法来计算(也也可根据转动中的动能定理可根据转动中的动能定理,通过计算变力矩的功通过计算变力矩的功来求来求).至于棒下落到竖直位置时的动能和角速至于棒下落到竖直
15、位置时的动能和角速度度,可采用系统的机械能守恒定律来解可采用系统的机械能守恒定律来解.(1)棒绕端点的转动惯量棒绕端点的转动惯量 ,由转动定律由转动定律 可得棒在可得棒在 位置时的角速度为位置时的角速度为:当当 时时,棒转动的角速度为棒转动的角速度为:由于由于 , 根据初始条件对式根据初始条件对式(1)积分积分,有有.Ao则角速度为则角速度为:(2)根据机械能守恒根据机械能守恒,棒下落至竖直位置时的动能为棒下落至竖直位置时的动能为:(3)由于该动能也就是转动动能由于该动能也就是转动动能,即即 ,所示所示,棒棒落至竖直位置时的角速度为落至竖直位置时的角速度为:一、选择题一、选择题 1A 2. C 3. A 4. D 5. B 6. A 7. C 8. E 9. D 10. C二、填空题二、填空题1. 3. 8. 第第5章章 静电场静电场;