《速算与巧算(乘除法)课件》由会员分享,可在线阅读,更多相关《速算与巧算(乘除法)课件(26页珍藏版)》请在金锄头文库上搜索。
1、之乘除法中的运算技巧湖光奥数四年级课程2015年9月21日张留记作品 254=100,1254=500,1258=1000。251=25,252=50,253=75,254=100。1251=125,1252=250,1253=375,1254=500;1255=625,1256=750,1257=875,1258=1000。(1)99425 (2)1251198(3)12572 (4)2512516(1)99425=99(425)=900(2)1251198=(1258)119=119000(3)12572=12589=10009=9000(4)2512516=2512528=(252) (
2、1258)=501000=50000 或2512516=2512544=(254)(1254)=100500=50000答案:4122512513812556253212541225=12(425)=1200125138=125813=100013=1300012556=12587=10007=70002532125=(254)(8125)=1001000=1000009999977778+3333366666【分析分析】把66666分解为233333,然后应用乘法分配律巧算原式原式=9999977778+33333322222 =99999(77778+22222) =99999000008
3、01995-3990+199522【分析分析】把3990分解为19952,这样801995、21995、221995中都有相同的乘数1995,可以利用乘法分配律进行巧算。 原式原式=801995-21995+19952 =1995(80-2+22) =199500 被乘数与乘数的十位数字相同,个位数字互补, 这类式子我们成为“头相同、尾互补”型; 被乘数与乘数的十位数字互补、个位数字相同, 这类式子我们成为“头互补、尾相同”型;对于计算这两类题目,有非常简捷的速算方法, 分别为“同补”速算法和“补同”速算法。“同补”速算法简单地说就是:积的末两位是“尾尾”,前面是“头(头+1)”例题: (1)
4、7278 (2)7179(注意:我们在实际计算中不会这样细列出式子,容易将答案错写成569,互补数如果是n位数,则应占乘积的后2n位,不足的位补0)(1)原式=7(7+1)100+28=5616(2)原式=7(7+1)100+19=5609“补同”速算法简单地说就是:积的末两位是“尾尾”,前面是“头头+尾”(1)7838 (2)4363;(1)原式=(73+8)100+88=2964(2)原式=(46+3)100+33=27097278=(70+2)(70+8)=70 70 +70 8+2 70+28=7 7 100+70 (8+2)+2 8=7 7 100+70 10+2 8=7 7 100
5、+7 100+2 8=7 (7+1) 100+2 8=5600+16=5616公式:a(b+c)=ab+ac逆用:ab+ac=a(b+c)例题:17534+17566原式=175=175(34+6634+66) =175 =175100100 =17500 =17500【思考】:这个例题是正用公式, 还是逆用公式?公因数练习:(1)123101 (2)12399 三、乘法分配律三、乘法分配律(1)原式=123(100+1) =123100+1231 =12300+123 =12423(2)原式=123(100-1) =123100-1231 =12300-123 =12177扩展:a(b+c+
6、d)=ab+ac+ad逆用:ab+ac+ad=a(b+c+d) 三、乘法分配律三、乘法分配律例题:6712+6735+6752+67原式=67(12+35+52+1) =67100 =6700【思考】:这个例题是正用公式, 还是逆用公式?【思考】:67可以看做什么?公因数公因数经验:1、一个公式往往有正、逆两个方向的使用价值; 2、逆用乘法分配律公式的过程,就是提取公因数的过程。 三、乘法分配律三、乘法分配律类型1:一个数乘以10,数字后直接加0即可;类型2:一个数乘以9,数字后直接加0,再减此数;类型4:一个偶数乘以5,除以2再加0;类型3:一个数乘以11,数字后直接加0,再加此数, 或“两
7、头一拉,中间相加”;类型5:一个偶数乘以15,“加半再添0”;类型1:一个数乘以10,数字后直接加0即可;练习:略类型2:一个数乘以9,数字后直接加0,再减此数;练习:1239 =1230-123 =1107练习:245611=24560+2456=27016 “两头一拉,中间相加”,要结合乘法竖式理解或:245611=2456266911 此处进位即得:27016类型3:一个数乘以11,数字后直接加0,再加此数, 或“两头一拉,中间相加”;类型4:一个偶数乘以5,除以2再加0;练习:65=30 165=80 1165=580类型5:一个偶数乘以15,“加半再添0”;练习:615=90 161
8、5=240 11615=1740类型1:乘除混合运算中的带符号搬家类型2:商不变的性质类型3:和、差与商的特殊混合运算(各除数相同)类型4:在乘号、除号后添括号类型1:乘除混合运算中的带符号搬家练习:8642754 =8645427 =1627 =432类型2:商不变的性质 除数和被除数同时乘以或除以同一个除数和被除数同时乘以或除以同一个不为不为0的数,商不变。的数,商不变。例题:例题:1105=1105= 2200 25 = 2200 25 = 11000 125 = 11000 125 =22010=2222010=228800100=888800100=88880001000=88880
9、001000=88类型3:和、差与商的特殊混合运算(各除数相同)例题:139+59= 215-65=结论:结论:多个数除以同一个数,然后相加减,等于多个数除以同一个数,然后相加减,等于这些数先加减,在除以这个相同的数的所得的商。这些数先加减,在除以这个相同的数的所得的商。(13+5)9=2(21-6)3例题:13205002501320500250 结论:结论:在乘号后面添括号,括号内的预算都不变;在乘号后面添括号,括号内的预算都不变;在除号后面添括号,括号内的乘号变成除号、除在除号后面添括号,括号内的乘号变成除号、除号变成乘号。(去括号规则与添括号一样)号变成乘号。(去括号规则与添括号一样)类型4:在乘号、除号后添括号、去括号=1320=1320(500250500250)=13202=13202=2640=2640 13205002501320500250 =1320=1320(500250500250)=13202=13202=605=605之乘除法中的运算技巧湖光奥数四年级课程2015年9月21日张留记作品结束了你学会了吗? 课下互动:Q群92386464 本课件也将传到群内供大家复习 回家要督促家长加群,并每天看群信息哟