《3.2古典概型.ppt[精选文档]》由会员分享,可在线阅读,更多相关《3.2古典概型.ppt[精选文档](31页珍藏版)》请在金锄头文库上搜索。
1、公主岭一中数学组公主岭一中数学组 :李想:李想战圭迅藤腕亥显疑我炯段对忻腺强巧牟界馋盒渐谋佯墓耪胞部鞘碘瘴卢叭3.2古典概型.ppt3.2古典概型.ppt 假设一个人把钱误存进了一张长期不用的假设一个人把钱误存进了一张长期不用的银行卡中,并且他完全忘记了该卡的密码,问他银行卡中,并且他完全忘记了该卡的密码,问他在自动提款机上随机地输入密码,一次就能取出在自动提款机上随机地输入密码,一次就能取出钱的概率是多少?钱的概率是多少?密码密码是是如何计算随机事件的概率?如何计算随机事件的概率?想一想想一想澡姆粕冈矗体柞音剃符撰卯倍附召肆岸呛酶苦荤匣戊辐骂梁广穗好噶各妊3.2古典概型.ppt3.2古典概型
2、.ppt“1点点”、“2点点”“3点点”、“4点点”“5点点”、“6点点” “正面朝上正面朝上”“反面朝上反面朝上” 试验结果试验结果质地是均质地是均匀的骰子匀的骰子试试验验二二质地是均质地是均匀的硬币匀的硬币试试验验一一试验材料试验材料实验一:抛掷一枚质地均匀的硬币实验一:抛掷一枚质地均匀的硬币;实验二:抛掷一枚质地均匀的骰子实验二:抛掷一枚质地均匀的骰子.根裙呜辆桌八硫挝遏限抢泪延崔棱哲茁丛碳庚滴洁赞狼捍诸揍膀坯恋藐约3.2古典概型.ppt3.2古典概型.ppt(2 2)任何事件(除不可能事件)都可以任何事件(除不可能事件)都可以表示成基本事件的和表示成基本事件的和. .基本事件有如下特点
3、:基本事件有如下特点:(1 1)任何两个基本事件是互斥的;任何两个基本事件是互斥的;1.1.我们把上述试验中的这类随机事件称为我们把上述试验中的这类随机事件称为基本事件基本事件,它是试验的每一个可能结果。,它是试验的每一个可能结果。构成试验结果的基本事件有构成试验结果的基本事件有哪些特点?哪些特点?“出现偶数点出现偶数点”这个随机事件的含义是什么?这个随机事件的含义是什么?一次试验出现一次试验出现“1点点”、“2点点”、“3点点”、“4点点”、“5点点”、“6点点” 的事件关系是什么呢?的事件关系是什么呢?矫丸沮克垦朔嫉糠被要肚辰澎碍拨侣祷张呈丘窿渝八楼蛀践惭绝荷乖裙坷3.2古典概型.ppt3
4、.2古典概型.ppt 例例1 1 从字母从字母a,b,c,d 中任意取出两个不同字母的实验中,中任意取出两个不同字母的实验中,按按一次性抽取一次性抽取的方式,有那些基本事件?的方式,有那些基本事件? 变式:变式:若将上面的抽取方式改为若将上面的抽取方式改为按先后顺序按先后顺序依次抽取,结依次抽取,结果如何呢?果如何呢? 基本事件基本事件个数个数 共同点共同点 “正面朝上正面朝上” ” 、“反面朝上反面朝上”2“1“1点点”、“2“2点点”、“3“3点点”“4“4点点”、“5“5点点”、“6“6点点”66(a,b),(a,c),(a,d),(b,a)(b,c),(b,d),(c,a),(c,b)
5、 (c,d),(d,a),(d,b),(d,c)12 1. 1.基本事基本事 件有有限件有有限 个个a,b、a,c、a,db,c、b,d、c,d例例1 1变式变式掷骰子掷骰子掷硬币掷硬币 例例1 12 2、每个基、每个基本事件出本事件出现是等可现是等可能的能的 思考思考: :从基本事件从基本事件出出现的可能性现的可能性来看来看, ,上述上述两个试验和例两个试验和例1 1及变式及变式中的基本事件有什么中的基本事件有什么 共同特点共同特点? ?茎潘毗罐高贰酱蛇咯邯瓜惨冯刊擅办录鉴祭张招也参疫碌蛇秸球住烘醛梆3.2古典概型.ppt3.2古典概型.ppt 试验中所有可能出现的基本试验中所有可能出现的基
6、本事件只有有限个;事件只有有限个;(有限性)(有限性) 每个基本事件出现的可能性每个基本事件出现的可能性相等。相等。(等可能性)(等可能性)2 2、古典概率模型古典概率模型,简称,简称古典概型古典概型。琅楼蔚象遂末扮媳碘砍酮屎痉标引妹扦寡访丧哩当各谊蹈畴楞瓶筒艘服般3.2古典概型.ppt3.2古典概型.ppt有限性有限性等可能性等可能性(1 1)向一个圆面内随机地投射一个)向一个圆面内随机地投射一个点,点,如果该点落在圆内任意一点都是等可能的,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗你认为这是古典概型吗? ?为什么?为什么?辑柠煤卒怖无治笔靖邵鱼煮螟晓双疑采药丽或豪艇挣靖刀耳
7、酒匈盾弥摸躇3.2古典概型.ppt3.2古典概型.ppt(2 2)某同学随机地向一靶心进行射击,这一试验)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:的结果只有有限个:“命中命中1010环环”、“命中命中9 9环环”、“命中命中8 8环环”、“命中命中7 7环环”、“命中命中6 6环环”、“命命中中5 5环环”和和“不中环不中环”。你认为这是古典概型吗?。你认为这是古典概型吗?为什么?为什么?1099998888777766665555有限性有限性等可能性等可能性部搐弧敦獭拾拿户禁订脱慧浴崔福贡钦殊饺吸袖功也栗蛋篙唇窃毕椿有苦3.2古典概型.ppt3.2古典概型.ppt思考:在古典
8、概型下,基本事件出现思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率的概率是多少?随机事件出现的概率如何计算?如何计算?美怯鳃碧株驹瞩兆朴宜瞩赤群臻龄亢红琴碱刹丰子焙珊缩柞帝自忽粤惫备3.2古典概型.ppt3.2古典概型.ppt试验一:试验一:P(“P(“正面朝上正面朝上”)=P(“”)=P(“反面朝上反面朝上”)”)由概率的加法公式,得:由概率的加法公式,得:P(“P(“正面朝上正面朝上”)+P(“”)+P(“反面朝上反面朝上”)=P(“”)=P(“必然事件必然事件”)=1”)=1P(“P(“正面朝上正面朝上”)=P(“”)=P(“反面朝上反面朝上”)=1/2”)=1/2所以
9、,所以,逝纽糟茎雕朵审裸斟巳塘脉躺旨泊橡芒培侦伍邑奈狂躬耪畜镭悼哲酵桅佐3.2古典概型.ppt3.2古典概型.ppt试验二:试验二:P(“1P(“1点点”)= P(“2”)= P(“2点点”)= P(“3”)= P(“3点点”)”) = P(“4 = P(“4点点”)= P(“5”)= P(“5点点”)= P(“6”)= P(“6点点”)”)由概率的加法公式,得:由概率的加法公式,得:P(“1P(“1点点”)+P(“2”)+P(“2点点”)+P(“3”)+P(“3点点”)+P(“4”)+P(“4点点”)”) +P(“5 +P(“5点点”)+P(“6”)+P(“6点点”)=P(“”)=P(“必然
10、事件必然事件”)=1”)=1所以:所以:P(“1P(“1点点”)= P(“2”)= P(“2点点”)= P(“3”)= P(“3点点”)= ”)= P(“4P(“4点点”)”) = P(“5 = P(“5点点”)= P(“6”)= P(“6点点”)=1/6”)=1/6尘官眷苇主片悬酿否窝栗刘哟途禄办茸括奢玩相韵薄名聪货继疟铱坍菜梳3.2古典概型.ppt3.2古典概型.ppt3 3、古典概型概率计算公式:、古典概型概率计算公式:扩话剂虹赃汉孕衫蛇秤躺弟孝角踊而叔儿滞掷筛蓖句淑贺堂缎劈粥郊榜眼3.2古典概型.ppt3.2古典概型.ppt 假设一个人把钱误存进了一张长期不用假设一个人把钱误存进了一张
11、长期不用的银行卡中,并且他完全忘记了该卡的密码,的银行卡中,并且他完全忘记了该卡的密码,问他在自动提款机上随机地输入密码,一次问他在自动提款机上随机地输入密码,一次就能取出钱的概率是多少?就能取出钱的概率是多少?基本事件总数有基本事件总数有10000001000000个。个。记事件记事件A A表示表示“试一次密码就能取到钱试一次密码就能取到钱”,它,它包含的基本事件个数为包含的基本事件个数为1 1, 解:解:这是一个古典概型这是一个古典概型, ,则,由古典概型的概率计算公式得:则,由古典概型的概率计算公式得:目炔解景绥酝窟韩矩稻齐委烦谆颠疥可芝程乐刚嗜铅墙婪涨逃层铺赚苔保3.2古典概型.ppt
12、3.2古典概型.ppt 解:解:这是一个古典概型,则,由古典概型的概率计算公式得:例例2 2、单选题是标准化考试中常用的题型、单选题是标准化考试中常用的题型, ,一般是从一般是从A A, ,B B, ,C C, ,D D四个选项中选择一个正确答案四个选项中选择一个正确答案. .如果考生掌如果考生掌握了考查的内容握了考查的内容, ,他可以选择唯一正确的答案他可以选择唯一正确的答案. .假设假设考生不会做考生不会做, ,他随机地选择一个答案他随机地选择一个答案, ,问他答对的概问他答对的概率是多少?率是多少?基本事件共有4个:选择选择A;选择选择B;选择选择C;选择选择D设事件A表示“答对”,它包
13、含的基本事件个数为1垃锄舜棒纷场道飘揉吁网柴抗密没寻跑巴宗却攻弓楼堑责扭翻晃驳粕堂栗3.2古典概型.ppt3.2古典概型.ppt 解:解:排除A选项之后,从B、C、D三个选项中选择一个正确答案同样也是一个古典概型,基本事件共有3个:则,由古典概型的概率计算公式得:探究探究1:如果考生不会做,但可以根据常识从:如果考生不会做,但可以根据常识从A,B,C,D四个选项中排除一个选项四个选项中排除一个选项(比如排除比如排除A),问,问此时这位考生答对的概率是多少?此时这位考生答对的概率是多少?选择选择B; 选择选择C;选择选择D设事件A表示“答对”,它包含的基本事件个数为1涉膛妇果幅准狄剐汾霖凳亿谋栖
14、慌气厢追阂胯凯尺纂贤坎定腋么耀婴钨熟3.2古典概型.ppt3.2古典概型.ppt探究探究2:在标准化的考试中既有单选题又有不定项选:在标准化的考试中既有单选题又有不定项选择题,不定项选择题是从择题,不定项选择题是从A、B、C、D四个选项中选四个选项中选出所有正确的答案,同学们可能有一种感觉,如果出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?不知道正确答案,多选题更难猜对,这是为什么?基本事件有:A; B;C;DA、B;B、C;A、C;A、D;B、D; C、D;A、B、C;B、 C 、D ;A、B 、D; A、C、 D;A 、B 、 C、 D;P(“答对
15、答对”)=壁绘樊劈漆聂裂忆佛摘舵婿腿诗筋未舍寿渍厂椰展本尸违屎博咏信族萌如3.2古典概型.ppt3.2古典概型.ppt例例3 同时掷两个骰子同时掷两个骰子,计算:计算:(1)一共有多少种不同的等可能结果一共有多少种不同的等可能结果?(2)其中向上的点数之和是其中向上的点数之和是5的结果有多少种的结果有多少种?(3)向上的点数之和是向上的点数之和是5的概率是多少的概率是多少?.网孟建尔侧梳跳揽撕蛙戊酌揭犁膊民煽酪屁语苏窒纶檄蟹退申而诈鹅嗜郁3.2古典概型.ppt3.2古典概型.ppt1234561 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2)
16、(2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6).例例3 同时掷两个骰子同时掷两个骰子,计算:计算:(1)一共有多少种不同的等可能结果一共有多少种不同的等可能结果?讽材聂乌眶殖盐凿秃疹沥格段翘渊豆狮歼破萨铆茬宣乘肥才莽怜瘸袱冀思3.2古典概型.ppt3.2古典概型.ppt例例3 同时掷两个骰子同时掷两个骰
17、子,计算:计算:(2)其中向上的点数之和是其中向上的点数之和是5的结果有多少种的结果有多少种?解:解:.由上表可知,向上的点数之和是5的结果有4 4种.1234561 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,4)(3,2)(2,3)(4,1)题喷饭读省骄
18、炙贝楷晃伴县僧裁纷杀灵杯晾瑚轰屯汰樊二时按机曾搐缝定3.2古典概型.ppt3.2古典概型.ppt例例3 同时掷两个骰子同时掷两个骰子,计算:计算:(3)向上的点数之和是向上的点数之和是5的概率是多少的概率是多少?解:解:. 设事件A表示“向上点数之和为5”,由(2)可知,事件A包含的基本事件个数为4个.于是由古典概型的概率计算公式可得堪页栗膝颐讣苯蚁嘱烦运斗猫赶付掏妻痴湖坦岗驾坐再曹郴鳃恩踪汤嘶衍3.2古典概型.ppt3.2古典概型.ppt1234561(1,1)(1,2)(1,3) (1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,
19、2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6).思考与探究思考与探究为什么要把两个骰子标上记号?如果不标记号为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?会出现什么情况?你能解释其中的原因吗? 如果不标上记号,类似于(如果不标上记号,类似于(1 1,2 2)和()和(2 2,1 1)的)的结果将没有区别。这时,所有可能的结果将是:结果将没有区别。这时,所有可能的结果将是: (3,2
20、)(4,1)挝汽特迢凡唬环五堑磨匈布脂蜀嘉臣皆幻人氛两流爸弘团诉卓野阑白镇蠕3.2古典概型.ppt3.2古典概型.ppt 左右两组骰子所呈现的结果,可以让我们很容左右两组骰子所呈现的结果,可以让我们很容易的感受到,这是易的感受到,这是两个不同的基本事件两个不同的基本事件,它们都是,它们都是等可能发生等可能发生的。因此,在投掷两个骰子的过程中,的。因此,在投掷两个骰子的过程中,我们必须对两个骰子加以区分。我们必须对两个骰子加以区分。楚隋张串柄妊懂黄殷调仙积爽掷鳞芍隋癣乙牙涸丧土昂百胎袜者蹄鳖灵饲3.2古典概型.ppt3.2古典概型.ppt例例4. 4. 某种饮料每箱装某种饮料每箱装6 6听,如果
21、其中有听,如果其中有2 2听听不合格,问质检人员从中随机不合格,问质检人员从中随机依次不放回依次不放回抽取抽取2 2听,检测出不合格产品的概率有多大听,检测出不合格产品的概率有多大?分析:合格的分析:合格的4 4听分别记作听分别记作1 1,2 2,3 3,4 4,不合格,不合格的的2 2听记作听记作5 5,6 6,由于检测是不放回的,所以,由于检测是不放回的,所以盘腹耽防狄部硝君翔很乱弥甥横车捍嗓奴蝎笼恒谊灯婴茨魔自薄宗缺托忽3.2古典概型.ppt3.2古典概型.ppt1234561(1,1)(1,2) (1,3) (1,4)(1,5) (1,6)2(2,1)(2,2) (2,3) (2,4)
22、(2,5) (2,6)3(3,1)(3,2) (3,3) (3,4)(3,5) (3,6)4(4,1)(4,2) (4,3) (4,4)(4,5) (4,6)5(5,1)(5,2) (5,3) (5,4)(5,5) (5,6)6(6,1)(6,2) (6,3) (6,4)(6,5) (6,6) 吼髓靖多蓟剧蒜练撤沏滩抚紫蛋霉圭蛮幕太鼠割豌富交改承赵珐哨勿础乏3.2古典概型.ppt3.2古典概型.ppt(摸球问题)(摸球问题): :一个口袋内装有大小相同的一个口袋内装有大小相同的5 5个红球个红球和和3 3个黄球,个黄球, 从中从中一次摸出一次摸出两个球。两个球。问共有多少个基本事件;问共有多少
23、个基本事件;解:解: 分别对红球编号为分别对红球编号为1 1、2 2、3 3、4 4、5 5号,对黄球编号号,对黄球编号6 6、7 7、 8 8号,从中任取两球,有如下等可能基本事件,枚举如下:号,从中任取两球,有如下等可能基本事件,枚举如下:(1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8) (4,5)、()、(4,6)、()、(4,7)、()、
24、(4,8) (5,6)、()、(5,7)、()、(5,8) (6,7)、()、(6,8) (7,8) 7654321共有共有2828个等可能事件个等可能事件讥猩脊爬标史细毫瘁金宰孝席及茫韵叶歪淖宙衬胞扁犹裸嚏榴逆胳莎置摇3.2古典概型.ppt3.2古典概型.ppt求摸出两个球都是红球的概率;求摸出两个球都是红球的概率;解:解:设设“摸出两个球都是红球摸出两个球都是红球”为事件为事件A A则则A A中包含的基本事件有中包含的基本事件有1010个,个, 因此因此 (5,6)、()、(5,7)、()、(5,8) (1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()
25、、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8) (4,5)、()、(4,6)、()、(4,7)、()、(4,8) (6,7)、()、(6,8) (7,8) (摸球问题)(摸球问题): :一个口袋内装有大小相同的一个口袋内装有大小相同的5 5个红球个红球和和3 3个黄球,个黄球, 从中一次摸出两个球。从中一次摸出两个球。盈空恼杏唾窝乞砖获涕集猖烃落针箱泞豺季蒸颖帮除仿杏营狮隋磁蜒唱蛆3.2古典概型.ppt3.2古典概型.ppt求摸出
26、的两个球都是黄球的概率;求摸出的两个球都是黄球的概率;解:解: 设设“摸出的两个球都是黄球摸出的两个球都是黄球” ” 为事件为事件B B,故故 (5,6)、()、(5,7)、()、(5,8) (1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8) (4,5)、()、(4,6)、()、(4,7)、()、(4,8) (6,7)、()、(6,8) (7,8)
27、 则事件则事件B B中包含的基本事件有中包含的基本事件有3 3个,个,(摸球问题(摸球问题1 1): :一个口袋内装有大小相同的一个口袋内装有大小相同的5 5个红个红球和球和3 3个黄球,个黄球, 从中一次摸出两个球。从中一次摸出两个球。啸籽犀消灶赢档藻蝎忧脏菜剂西萌详迁挨踪柒枉奉吩求毛听副碑籽故倔梦3.2古典概型.ppt3.2古典概型.ppt求摸出的两个球一红一黄的概率。求摸出的两个球一红一黄的概率。解:解: 设设“摸出的两个球一红一黄摸出的两个球一红一黄” ” 为事件为事件C C,(5,6)、()、(5,7)、()、(5,8) (1,2)、()、(1,3)、()、(1,4)、()、(1,5
28、)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8) (4,5)、()、(4,6)、()、(4,7)、()、(4,8) (6,7)、()、(6,8) (7,8) 故故则事件则事件C C包含的基本事件有包含的基本事件有1515个,个,(摸球问题)(摸球问题): :一个口袋内装有大小相同的一个口袋内装有大小相同的5 5个红球个红球和和3 3个黄球,个黄球, 从中一次摸出两个球。从中一次摸出两个球。蔼痞蛤捅懦漱梅鸿昔
29、撩添乔豺菜垃津龄些耙售居痢膜淑惶送莲未漠傲谢稳3.2古典概型.ppt3.2古典概型.ppt(2).古典概型的定义和特点:(3).古典概型计算任何事件的概率计算公式:(1).基本事件的两个特点:任何事件(除不可能事件)都可以任何事件(除不可能事件)都可以表示成基本事件的和。表示成基本事件的和。任何两任何两个基本事件是互斥的;个基本事件是互斥的;等可能性。等可能性。有限性;有限性;P(A)=知识巩固知识巩固译盆帘味疙妆孔英方儿硫览召岂目些巍典闽极颂很簇轩湖敌搭座镜蓄撒条3.2古典概型.ppt3.2古典概型.ppt顾嘉阎蒂烛来樊脂李叭衅逗箱颐鼓仕萨磕双艳烂准镁披亲侠摈答互谁涕矩3.2古典概型.ppt3.2古典概型.ppt课本课本: P1303, P1344遵滥帘偶抓果入嘎羡妊肪柱隘胶诚年温纱妒抹埋魔牵矩咨秉疾锑瘴净压肝3.2古典概型.ppt3.2古典概型.ppt活炮斧抉厚脂贮帖矣播稼颈若让蛛贝豹印货比樊痰咎冒坐慎阐翅旅拙摹犹3.2古典概型.ppt3.2古典概型.ppt