《第5讲生产与服务管理中的优化问题一》由会员分享,可在线阅读,更多相关《第5讲生产与服务管理中的优化问题一(47页珍藏版)》请在金锄头文库上搜索。
1、新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 第第5 5讲讲: :生产与服务管理中的生产与服务管理中的优化问题优化问题( (一一) ) 0-1规划问题补充规划问题补充生产与销售计划问题生产与销售计划问题有瓶颈设备的多级生产计划问题有瓶颈设备的多级生产计划问题 疏散问题疏散问题储闷巴真奖酥罢哮损蔬侥犹互簧同芭泰源烦甥镶祖蕊洒遣窒久墟担袋费状第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优
2、优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 0-1变量作为逻辑变量(变量作为逻辑变量(Logical variable),常常被用来处理),常常被用来处理“选选择问题择问题”。 如:假定现有的如:假定现有的m种资源对可供选择的种资源对可供选择的n个项目进行投资个项目进行投资,每个项每个项目可获取的利润为目可获取的利润为cj元,则求利润最大的数学模型为求一组决策变元,则求利润最大的数学模型为求一组决策变量量x1,x2, ,xn,使使 其中,其中,cj表示投资第表示投资第j项目获得的期望收益(价值
3、系数),项目获得的期望收益(价值系数),aij表示第表示第i种种资源投于第资源投于第j项目的数量,项目的数量,bi表示第表示第i种资源的限量。种资源的限量。一一 0-1 0-1整数规划问题补充整数规划问题补充邱差再胆堵融缚鸣刹瞥厅畔笔傻怀傻蛹届道题采侯别撩逮抗敏舟贾型著悬第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 1)如果在可供选择的)如果在可供选择的k(kn)个项目中,必须且只需选择一项
4、,则在个项目中,必须且只需选择一项,则在(2)中加入新的约束条件中加入新的约束条件 2)如果可供选择的)如果可供选择的k(kn)个项目相互排斥的,则在个项目相互排斥的,则在(2)中加入新的约中加入新的约束条件束条件 3)如果可供选择的)如果可供选择的k(kn)个项目中,至少应选择一项投资,则在个项目中,至少应选择一项投资,则在(2)中加入新的约束条件中加入新的约束条件 4)如果项目)如果项目j的投资必须以项目的投资必须以项目i的投资为前提,则可在的投资为前提,则可在(2)中加入新的中加入新的约束约束 5)如果项目)如果项目i与项目与项目j要么同时被选中,要么同时不被选中,则在要么同时被选中,要
5、么同时不被选中,则在(2)中中加入新的约束加入新的约束膛眺邹霞麦岛啼卤昂椿心獭间米欧同杉齿笛壳釜馅歪再篡箩醒读抒呛复蔚第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 6)如果对第)如果对第r种资源与第种资源与第t种资源的投资的是相互排斥的,即只能对资种资源的投资的是相互排斥的,即只能对资源源br与与bt中的一种进行投资,则可将中的一种进行投资,则可将(2)的第的第r个和第个和第t个约束条件改写
6、为个约束条件改写为 其中其中y为新引入的为新引入的01变量,变量,M为充分大的正数。为充分大的正数。 7)若在)若在m个约束中只有个约束中只有k个起作用,则(个起作用,则(2)改为)改为 其中其中yi为为01变量,变量,M为充分大的正数。为充分大的正数。耽扇软毙逾蹭谦很畜脉膝极电浊垣羹街洛毕谆躯犀了握聋驴宛莲逃或掩顷第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 则,(则,(2)表示为:)表示
7、为: 8)约束条件的右端项可能是)约束条件的右端项可能是r个值(个值(b1,b2, br)中的某一个,即)中的某一个,即 9)两组条件中满足其中一组)两组条件中满足其中一组若若x14,则,则x21;否则(即;否则(即x14时)时),x23. 定义定义yi为为01变量,变量,M为充分大的正数为充分大的正数,则问题可表述为则问题可表述为莽荆梢墙颖巾共梳叭做婶合绰把脯曼俊饶插增警乐能乙屹仪溶第畜曰抹酬第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM
8、 优化建模优化建模新余学院新余学院 建模组建模组 10)可以用以表示含固定费用的函数)可以用以表示含固定费用的函数如若用如若用xj代表产品代表产品j的生产数量的生产数量,其生产费用函数通常可表为其生产费用函数通常可表为: 其中其中Kj是同产量无关的生产准备费用。问题的目标是使所有产品的是同产量无关的生产准备费用。问题的目标是使所有产品的总生产费用为最小总生产费用为最小.即即塘练苹然抹窍骡滋奈哨亥剧尧瞥休考草野汾重自杂陛惮匀悉廖胚纵驹倘埋第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一
9、页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 同样同样,定义定义yj为为01变量,当变量,当xj=0时时,yj=0;当当xj0,yj=1. 因此因此,引进一个特殊的约束条件引进一个特殊的约束条件: 所以线性规划模型为所以线性规划模型为由由(7)看出当看出当xj=0时,为使时,为使z极小化,应有极小化,应有yj=0思令鸯霍磨舌殿潭宜黄颐易床费股又触溢缚华掉呐荫虐之使郸捉琉剔砷嫂第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu U
10、niversity MCM 优化建模优化建模新余学院新余学院 建模组建模组 例例1 试用试用0-1变量对下列各题分别表示成一般线形约束条变量对下列各题分别表示成一般线形约束条件:件: (1)X1+X22或或2X1+3X28; (2)变量变量X3只能取只能取0,5,9,12; (3) 若若X24,则则X50,否则否则X53; (4)以下四个约束条件中至少满足以下四个约束条件中至少满足2个个鼎屁助霸恫狐淹坦盛弄乌力惨济溶侣股胳凰发淡躇希名凳鬃褂秸认笔奢沼第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建
11、模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 解:解:迢糖瑚执幸舟南海猜贡绅点摧缝犁疚刚阁姬坛码镶沏爆埂考犁泽稀稼桶惜第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 例例2 将以下问题表示为混合整数规划模型将以下问题表示为混合整数规划模型段历慌听嗓田采灯铅迫鲸程柿臣惟陆板农华疡磺擅抱新姻搬让抬葵圾簧刚第
12、5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 瞧芽应葱镐碟龄镭佩琉酬誊拔丝绪岂法宪瓜渺醒卖圭揉陪勒懊渺顺计倦私第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 解
13、解 目标函数为:目标函数为:约束条件:约束条件:痘蚊贞荆观敝柬亢尧烯摹翼三栅珐立邪望赘丸灸寄槛敏肖怕百袭历晰芽寻第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 例例3 应用应用 0-1 变量解决含互斥约束条件问题变量解决含互斥约束条件问题设:工序设:工序 B 有两种方式完成有两种方式完成 方式(方式(1 )的工时约束为)的工时约束为 0.3X1 + 0.5X2 150 方式(方
14、式(2 )的工时约束为)的工时约束为 0.2X1 + 0.4X2 120 问题是完成工序问题是完成工序 B 只能从两种方式中任选一种,如何将这只能从两种方式中任选一种,如何将这两个互斥的约束条件统一在一个线性规划模型中呢?两个互斥的约束条件统一在一个线性规划模型中呢?引入引入 0-1 变量变量y1 =0 若工序若工序 B 采用方式(采用方式(1 )完成)完成1 若工序若工序 B 不采用方式(不采用方式(1 )完成)完成y2 =0 若工序若工序 B 采用方式(采用方式(2 )完成)完成1 若工序若工序 B 不采用方式(不采用方式(2 )完成)完成筏萎呈毁孩铜送冕忙汞屁壮控牛碾裕女富读忻往场肄满篓
15、码翅醛庇挝怨澄第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 于是前面两个互斥的约束条件可以统一为如下三个约束条件:于是前面两个互斥的约束条件可以统一为如下三个约束条件: 0.3X1 + 0.5X2 150 + M1y1 0.2X1 + 0.4X2 120 + M2y2 y1 + y2 = 1 其中其中 M1 ,M2 都是足够大的正数。都是足够大的正数。炽仍旱漠跪磊座藉底迫辑震奴观强挛奄援滨朔
16、瓶诺箕偿筏娇肃饵舞鞍瞩气第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 例例4 4 某公司用两种原油(某公司用两种原油(A A和和B B)混合加工成两种)混合加工成两种汽油(甲和乙)。甲、乙两种汽油含原油汽油(甲和乙)。甲、乙两种汽油含原油A A的最低的最低比例分别为比例分别为50%50%和和60%60%,每吨售价分别为,每吨售价分别为48004800元和元和56005600元。该公司现有原油
17、元。该公司现有原油A A和和B B的库存量分别为的库存量分别为500500吨和吨和10001000吨,还可以从市场上买到不超过吨,还可以从市场上买到不超过15001500吨吨的原油的原油A A。原油。原油A A的市场价为:购买量不超过的市场价为:购买量不超过500500吨吨时的单价为时的单价为1000010000元元/ /吨;购买量超过吨;购买量超过500500吨但不超吨但不超过过10001000吨时,超过吨时,超过500500吨的部分吨的部分80008000元元/ /吨;购买吨;购买量超过量超过10001000吨时,超过吨时,超过10001000吨的部分吨的部分60006000元元/ /吨。
18、吨。该公司应如何安排原油的采购和加工。该公司应如何安排原油的采购和加工。二二 生产与销售计划问题生产与销售计划问题嫉晌曲赢妹沽荤绽权型郸吉绢砸艇巢材偏条姐恃殖苔啥污宜饭犯佑甸泵郎第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 2.1 2.1问题分析问题分析 安排原油采购、加工的目标是利润最大,题目中给安排原油采购、加工的目标是利润最大,题目中给出的是两种汽油的售价和原油出的是两
19、种汽油的售价和原油A A的采购价,利润为的采购价,利润为销售汽油的收入与购买原油销售汽油的收入与购买原油A A的支出之差。这里的的支出之差。这里的难点在于原油难点在于原油A A的采购价与购买量的关系比较复杂,的采购价与购买量的关系比较复杂,是分段函数关系,能否及如何用线性规划、整数规是分段函数关系,能否及如何用线性规划、整数规划模型加以处理是关键所在。划模型加以处理是关键所在。旁仪骨普釉深声拳峭蝶楷床劫茨节喀伟篙换枣牟霍灸馏搏劫词慈玲耻槐负第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上
20、一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 模型建立设原油模型建立设原油A A的购买量为的购买量为x x(吨),根据题目所给数据,(吨),根据题目所给数据,采购的支出采购的支出c(x)c(x)可表为如下的分段线性函数(以下价格以可表为如下的分段线性函数(以下价格以千元千元/ /吨为单位):吨为单位):(1)(1)设原油设原油A A用于生产甲、乙两种汽油的数量分别为用于生产甲、乙两种汽油的数量分别为x x1111和和x x1212(吨),(吨),原油原油B B用于生产甲、乙两种汽油的数量分别为用于生产甲、乙两种汽油的数量分别为x
21、 x2121和和x x2222(吨),(吨),则总的收入为则总的收入为4.8(4.8(x x1111+ +x x2121)+5.6()+5.6(x x1212+ +x x2222) )(千元)。(千元)。于是本例的目标函数(利润)为于是本例的目标函数(利润)为(2)(2)敦参妄呀婆恋讯喧抖级洪站彪岗坊亮症完机订互卞蚌谴噎娄誉芭设柳味春第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模
22、组 约束条件包括加工两种汽油用的原油约束条件包括加工两种汽油用的原油A A、原油、原油B B库存量的限制,库存量的限制,和原油和原油A A购买量的限制,以及两种汽油含原油购买量的限制,以及两种汽油含原油A A的比例限制,的比例限制,它们表示为它们表示为(3)(4)(5)(6)(7)(8)由于(由于(1 1)式中的)式中的c c( (x x) )不是线性函数,(不是线性函数,(1 1) (8 8)给出的是)给出的是一个非线性规划。而且,对于这样用分段函数定义的一个非线性规划。而且,对于这样用分段函数定义的c c( (x x) ),一般的非线性规划软件也难以输入和求解。能不能想办法一般的非线性规划
23、软件也难以输入和求解。能不能想办法将该模型化简,从而用现成的软件求解呢?将该模型化简,从而用现成的软件求解呢?载洲迷妈搭淬孤要靴浊谍裙塔巴半聂茶熙羔袍逢笋铰盔收侍汽励邹治毗途第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 2.2 求解模型 将原油将原油A的采购量的采购量x分解为三个量,即用分解为三个量,即用x1,x2,x3分分别表示以价格别表示以价格10、8、6千元千元/吨采购
24、的原油吨采购的原油A的吨数,总的吨数,总支出为支出为c(x) = 10x1+8x2+6x3,且,且(9)这时目标函数(这时目标函数(2)变为线性函数:)变为线性函数:(10)应该注意到,只有当以应该注意到,只有当以10千元千元/吨的价格购买吨的价格购买x1=500(吨)时,才能以(吨)时,才能以8千元千元/吨的价格购买吨的价格购买x2(0),这个条件可以表示为),这个条件可以表示为(11)诈诡盲实泊值痛籍浮艇心曼傲涤亩讥臻削淑田酶总彪噬录涕盲轮群询垣损第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建
25、 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 同理,只有当以同理,只有当以8 8千元千元/ /吨的价格购买吨的价格购买x x2 2=500=500(吨)时,(吨)时,才能以才能以6 6千元千元/ /吨的价格购买吨的价格购买x x3 3(00),于是),于是(12)(12)此外,此外,x x1 1,x x2 2,x x3 3的取值范围是的取值范围是(13)(13)互货凤蠕酮汹抄炯丰潍篙半方副沃思从脏捂摈爱泰轮堕额橇冉管蚕挑仁直第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新
26、余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 由于有非线性约束由于有非线性约束(11),(12)(11),(12),(3)(13)(3)(13)构成非线性构成非线性规划模型。规划模型。LINGOLINGO程序:程序:督银首拖封肄廓宜聊颜队傲喊脖尺匣绥冉纵孩撂贿冒剑忿澎松槽谎饰恼恳第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu U
27、niversity MCM 优化建模优化建模新余学院新余学院 建模组建模组 将文件存储并命名为将文件存储并命名为exam0501a.lg4exam0501a.lg4,执行菜单命令执行菜单命令“LINGO|SolveLINGO|Solve”,运行该程序得到:,运行该程序得到:遇畸僚锰霍钦快沾蒜扯脑捧嫉慌赵章飘檄拟哀懈觅刘额节麓碧搅灸实唱喷第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建
28、模组 最优解最优解: : 用库存的用库存的500500吨原油吨原油A A、500500吨原油吨原油B B生产生产10001000吨汽油甲,不购买新的原油吨汽油甲,不购买新的原油A A,利润为,利润为48004800(千元)(千元) 但是此时但是此时LINGOLINGO得到的结果只是一个得到的结果只是一个局部最优解局部最优解可以用菜单命令可以用菜单命令“LINGO|OptionsLINGO|Options”在在“Global Global SolverSolver”选项卡上启动全局优化(选项卡上启动全局优化(Use Global Use Global SolverSolver)选项,然后重新执行
29、菜单命令)选项,然后重新执行菜单命令“LINGO|SolveLINGO|Solve” , , 得到:得到:姥恼搞攀署处睁桔妒谤拙隧蓟然碑颊芬锁藏铺集绥钒水胆捅痢法锈壶掣垦第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 此时此时LINGOLINGO得到的结果是一个得到的结果是一个全局最优解全局最优解(Global Global optimal solutionoptimal so
30、lution):购买):购买10001000吨原油吨原油A A,与库存的,与库存的500500吨原吨原油油A A和和10001000吨原油吨原油B B一起,共生产一起,共生产25002500吨汽油乙,利润为吨汽油乙,利润为50005000(千元),高于刚刚得到的局部最优解对应的利润(千元),高于刚刚得到的局部最优解对应的利润48004800(千元)。(千元)。侄案膘烃刷拦铲虑蓖本冲僵猩苇标奏体傻喻嫌酝蘑报蝗苑囤倍识增临敝睁第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下
31、一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 在给定的外部需求和生产能力等限制条件下,按照生在给定的外部需求和生产能力等限制条件下,按照生产总费用最小编制未来若干个生产周期的最优生产产总费用最小编制未来若干个生产周期的最优生产计划,这种问题在文献上一般称为批量问题计划,这种问题在文献上一般称为批量问题(Lotsizing ProblemsLotsizing Problems)。)。我们通过下面的具体例子来说明这种多级生产计划问我们通过下面的具体例子来说明这种多级生产计划问题的优化模型。这里题的优化模型。这里“多级多级”的意思是需要考虑产的意思是需
32、要考虑产品是通过多个生产阶段(工艺过程)生产出来的。品是通过多个生产阶段(工艺过程)生产出来的。 三三 有瓶颈设备的多级生产计划问题有瓶颈设备的多级生产计划问题便帕环默诵口妇卞读胳让氏踩箭贸牧炮拙砒滇胎沼靴柏忆拎井贿饱候找晌第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 例例5 5 某工厂的主要任务是通过组装生产产品某工厂的主要任务是通过组装生产产品A A,用,用于满足外部市场
33、需求。于满足外部市场需求。A A产品的产品构成与组装过程见图产品的产品构成与组装过程见图5-25-2:即:即D D、E E、F F、G G是从外部采购的零件,先将零件是从外部采购的零件,先将零件D D、E E组装成部件组装成部件B B,零,零件件F F、G G组装成部件组装成部件C C,然后将部件,然后将部件B B、C C组装成产品组装成产品A A出出售。售。图中弧上的数字表示的是组装时部件(或产品)中包图中弧上的数字表示的是组装时部件(或产品)中包含的零件(或部件)的数量(可以称为消耗系数),含的零件(或部件)的数量(可以称为消耗系数),例如例如DBDB弧上的数字弧上的数字“9 9”表示组装
34、表示组装1 1个部件个部件B B需要用到需要用到9 9个零件个零件D D;BABA弧上的数字弧上的数字“5 5”表示组装表示组装1 1件产品件产品A A需要需要用到用到5 5个部件个部件B B;依此类推。依此类推。 抓迟姐返敢持连剩厘寸晤酌季幌使纬朗抨智汞哦嘛插各扛麓吏桶测唬泪弃第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 瓶颈设备加工瓶颈设备加工ABCDEFG5791113
35、15图图5-2 5-2 产品构成与组装过程图产品构成与组装过程图昔丁求猖命敢井截趁慈显闲棠坦档宛诵舶频叫吠褪舜绪踞榨黔兜崔淮鹅夜第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 表表5-1 5-1 生产计划的原始数据生产计划的原始数据 周次123456A的外部需求40010009010瓶颈能力1000005000500010001000零部件编号ABCDEFG生产准备费用4005
36、001000300200400100单件库存费用120.61.00.040.030.040.04姑疡朝彬辟咕辛严齐邮横河金馋原脚韧方均汛狮褒责黎徐擅匀滓唇姆超挣第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 假设该工厂每次生产计划的计划期为假设该工厂每次生产计划的计划期为6周(即每次制定未来周(即每次制定未来6周的生产计划),只有最终产品周的生产计划),只有最终产品A有外部需求
37、,目前收到的有外部需求,目前收到的订单的需求件数按周的分布如表订单的需求件数按周的分布如表5-1第第2行所示。部件行所示。部件B、C是在该工厂最关键的设备(可以称为瓶颈设备)上组装出来是在该工厂最关键的设备(可以称为瓶颈设备)上组装出来的,瓶颈设备的生产能力非常紧张,具体可供能力如表的,瓶颈设备的生产能力非常紧张,具体可供能力如表5-1第第3行所示(第行所示(第2周设备检修,不能使用)。周设备检修,不能使用)。B、C的能力消的能力消耗系数分别为耗系数分别为5和和8,即生产,即生产1件件B需要占用需要占用5个单位的能力,个单位的能力,即生产即生产1件件C需要占用需要占用8个单位的能力。个单位的能
38、力。对于每种零部件或产品,如果工厂在某一周订购或者生产该对于每种零部件或产品,如果工厂在某一周订购或者生产该零部件或产品,工厂需要付出一个与订购或生产数量无关的零部件或产品,工厂需要付出一个与订购或生产数量无关的固定成本(称为生产准备费用);如果某一周结束时该零部固定成本(称为生产准备费用);如果某一周结束时该零部件或产品有库存存在,则工厂必须付出一定的库存费用(与件或产品有库存存在,则工厂必须付出一定的库存费用(与库存数量成正比)。这些数据在表库存数量成正比)。这些数据在表5-1第第5、6行给出。行给出。猴搪兑帝粥铣驶上两超命贸密乏临匆但抬单燃盛蓝呻宇盛想鳖兰拘已涧访第5讲生产与服务管理中的
39、优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 按照工厂的信誉要求,目前接收的所有订单到期按照工厂的信誉要求,目前接收的所有订单到期必须全部交货,不能有缺货发生;此外,不妨必须全部交货,不能有缺货发生;此外,不妨简单地假设目前该企业没有任何零部件或产品简单地假设目前该企业没有任何零部件或产品库存,也不希望第库存,也不希望第6周结束后留下没有任何零部周结束后留下没有任何零部件或产品库存。最后,假设不考虑
40、生产提前期,件或产品库存。最后,假设不考虑生产提前期,即假设当周采购的零件马上就可用于组装,组即假设当周采购的零件马上就可用于组装,组装出来的部件也可以马上用于当周组装成品装出来的部件也可以马上用于当周组装成品A。在上述假设和所给数据下,如何制定未来在上述假设和所给数据下,如何制定未来6周的生周的生产计划?产计划?乒苍浦九穗镣聘柒兔壳峡镁松誊珐仲啸拭土邯是掣均瞳毡晰穗贫捂噎义纲第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM
41、优化建模优化建模新余学院新余学院 建模组建模组 3.1 问题分析问题分析 这个例子考虑的是在有限的计划期内这个例子考虑的是在有限的计划期内, 给定产品结构、给定产品结构、生产能力和相关费用及零部件或成品(以下统称为生产生产能力和相关费用及零部件或成品(以下统称为生产项目)在离散的时间段上(这里是周,也可以是天、月项目)在离散的时间段上(这里是周,也可以是天、月等)的外部需求之后等)的外部需求之后, 确定每一生产项目在每一时间段确定每一生产项目在每一时间段上的生产量上的生产量 (即批量即批量), 使总费用最小使总费用最小.由于每一生产项由于每一生产项目在每一时间段上生产时必须经过生产准备目在每一
42、时间段上生产时必须经过生产准备 (Setup), 所以通常的讨论中总费用至少应考虑生产准备费用和库所以通常的讨论中总费用至少应考虑生产准备费用和库存费用存费用. 其实,如果是现实问题,应该还有生产的直接成本(如其实,如果是现实问题,应该还有生产的直接成本(如原材料成本、人力成本、电力成本等)等费用。由已知原材料成本、人力成本、电力成本等)等费用。由已知条件可知,计划期初和末期库存都是条件可知,计划期初和末期库存都是0,所以,所以6个周期内个周期内A的总产量等于总销量。从而可以考虑本题直接成本为的总产量等于总销量。从而可以考虑本题直接成本为一个常数。一个常数。叙恃浅制醇闻狗砧藤恕饥裕檬渠铆锅废烈
43、捍沛改遗北耙烯凉贝混蛰碑塞喳第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 3.2 符号说明符号说明为了建立这类问题的一般模型,我们定义如下数为了建立这类问题的一般模型,我们定义如下数学符号:学符号:N - 生产产品(部件)总数(本例中生产产品(部件)总数(本例中N=7);T - 计划期长度(本例中计划期长度(本例中T=6);M - 一个充分大的正数,在模型中起到使模一个充分大
44、的正数,在模型中起到使模型线性化的作用型线性化的作用; - 第第t周生产产品周生产产品i的数量的数量; t=1, T, ;i=1, , N. - 生产(组装)一个产品生产(组装)一个产品j需要产品需要产品i的个数的个数;i,j=1, , N.鳖锋猩孟产喧队准璃钙听育港擒放捣卖降追搪区珐览膳叔逃涡骇沾挪疡监第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 - - 产品产品j j在第
45、在第t t周的外部需求量;(只有周的外部需求量;(只有A A有)有) - 产品产品j在第在第t周末的库存量,周末的库存量,- 产品产品i在在t周是否生产的标志周是否生产的标志 (0:不生产:不生产, 1:生产:生产);S(i) - 产品结构中项目产品结构中项目i的直接后继项目集合的直接后继项目集合; - 产品产品i在在t时段生产时的生产准备费用时段生产时的生产准备费用; - 产品产品i在在t时段的单件库存费用时段的单件库存费用; - 资源在资源在t时段的能力上限时段的能力上限; - 产品产品i在在t时段生产时时段生产时, 生产单个产品占用生产单个产品占用 的能力上限的能力上限;姓煤烽奖攫嘘响求
46、壮兹速名珊昏鸵沛纫吼夷敷恳扶掏滑赊港芋壮逞渗弥骂第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 在上述数学符号中,只有在上述数学符号中,只有为为决策决策变变量量; 其余均其余均为为已知的已知的计计划参数。划参数。目标函数目标函数3.3 模型的建立模型的建立 这个问题的目标是使生产准备费用和库存费这个问题的目标是使生产准备费用和库存费用的总和最小。因此,目标函数应该是每个用的总和
47、最小。因此,目标函数应该是每个项目在每个时段上的生产准备费用和库存费项目在每个时段上的生产准备费用和库存费用的总和,即用的总和,即(0)鸡豆沛辟蔼卑乐函庄胆减益纽瘟凸匡猜禽迹囚荣乳蓄闲刮湛聊娜飞掏纵溢第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 约束条件约束条件这个问题中的约束有这么几类:每个项目的物流这个问题中的约束有这么几类:每个项目的物流应该守恒、资源能力限制应该满足、
48、每时段生应该守恒、资源能力限制应该满足、每时段生产某项目前必须经过生产准备和非负约束产某项目前必须经过生产准备和非负约束 (对(对Yi,j是是0-1约束)。约束)。所谓物流守恒(假设所谓物流守恒(假设Ii,0 =0) (1)资源能力限制比较容易理解,即资源能力限制比较容易理解,即(2)痰厂棕饮枪落哗糟汗掣姬棱冶馏极赠婉糙弯嫩升捅躁氮摹搞芹淋信疙伏释第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学
49、院 建模组建模组 (3)每时段生产某项目前必须经过生产准备,也就是说当每时段生产某项目前必须经过生产准备,也就是说当Xit=0时时Yit=0;Xit0时时Yit=1。这本来是一个非线性约束,但是。这本来是一个非线性约束,但是通过引入参数通过引入参数M(很大的正数,表示每个项目每个时段(很大的正数,表示每个项目每个时段的最大产量)可以化成线性约束,即:的最大产量)可以化成线性约束,即: 总结总结: : 这个问题的优化模型就是在约束这个问题的优化模型就是在约束(1 1)()(2 2)()(3 3)下使目标函数()下使目标函数(0 0)达到最小。)达到最小。 窖浊本衷屯壤蕉熄绷窘猿惊寥下你赁焦星镶渤
50、鞭肢癌甲拳物嚷漂遏百内堡第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 3.4 3.4 求解模型求解模型本例生产项目总数本例生产项目总数N=7(A、B、C、D、E、F、G) ,计,计划期长度划期长度T=6(周),只有(周),只有A有外部需求,所以有外部需求,所以di,t中中只有只有d1,t可以取非零需求,即表可以取非零需求,即表5-1中的第中的第2行的数据,行的数据,其他全部为
51、零。其他全部为零。 参数参数si,t 、 hi,t只与项目只与项目i有关,而不随有关,而不随时段时段t变化,所以可以略去下标变化,所以可以略去下标t,其数值就是表,其数值就是表5-1中中的最后两行数据。的最后两行数据。 aI,t只与项目只与项目i有关,而不随时段有关,而不随时段t变化,所以可以同变化,所以可以同时略去下标时略去下标t,即,即a2=5,a3=8(其他(其他ai为为0)。从图)。从图6-2中容易得到项目中容易得到项目i的直接后继项目集合的直接后继项目集合S(i)和消耗和消耗系数。系数。丙哀滥宦罕焊狗忱吹闻遮颤诉滚送巳萨偿扯抖亚粕晨征线媒逸城裕炬的熟第5讲生产与服务管理中的优化问题一
52、第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 由于本例中,由于本例中,A的外部总需求为的外部总需求为240,所以任何项目的产量不会,所以任何项目的产量不会超过超过24071525000(从图(从图6-2可以知道,这里可以知道,这里715已经是每已经是每件产品件产品A对任意一个项目的最大的消耗系数了),所以取对任意一个项目的最大的消耗系数了),所以取M=25000就已经足够了。就已经足够了。 本例中的具体模型可
53、以如下输入本例中的具体模型可以如下输入LINGO软件:软件:得到其数学模型为得到其数学模型为接肋来赁淀董扫巍馋锅域哟馁快揣暗恐何仓暗洁鹏辉饥镜吗辗牢纱鹅雄纽第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 另解:准备以下的数据文件(文本文件另解:准备以下的数据文件(文本文件exam0502.LDT,可以看到其中也,可以看到其中也可以含有注释语句):可以含有注释语句):具体模型可以
54、如下输入具体模型可以如下输入LINGO软件:软件:LINDOLINDO求解求解: : 得到最优目标函数值为得到最优目标函数值为9245, 9245, 结果如下:结果如下:表表5 5-2-2 生产计划的最后结果生产计划的最后结果 周次123456A的产量40100100B的产量2001000C的产量1055625D的产量18009000E的产量220011000F的产量137158125G的产量158259375灭燃顶刽币庞避幽涂矗酌泣燕郸疑赐丸崭塑五蕾毫丛竞叠阻馆歇惠镣圆臂第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优
55、优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 四四 疏散问题疏散问题例例6 甲市一家大公司由五个部门(甲市一家大公司由五个部门(A,B,C,D,E)组成,现要将它)组成,现要将它的几个部门迁出甲市,迁至乙或丙市(假设每个部门允许接的几个部门迁出甲市,迁至乙或丙市(假设每个部门允许接收的部门不超过收的部门不超过3个)个).除政府鼓励外,还有用房便宜、招工除政府鼓励外,还有用房便宜、招工方便等好处方便等好处.其好处的数量估计如下表其好处的数量估计如下表迁市迁市 部门部门A 部门部门B 部门部门C 部
56、门部门D 部门部门E 乙乙 10 15 10 20 5 丙丙 10 20 15 15 15 疏散后部门间每年增加的通讯量如下疏散后部门间每年增加的通讯量如下 部门部门 B C D E A 0 1000 1500 0 B 1400 1200 0 C 0 2000 D 700捆匣塑双婆桥荡壹简则良躬诊芝芳蟹栖驭唯切剪厚鄙吱席顶函番厌金受怨第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模
57、组 不同城市间单位通讯量的费用如表不同城市间单位通讯量的费用如表 市市 甲甲 乙乙 丙丙 甲甲 100 130 90 乙乙 50 140 丙丙 50求各个部门应置于何市,使年费用最少?求各个部门应置于何市,使年费用最少?解:这是个二次指派问题,可将它化为线性解:这是个二次指派问题,可将它化为线性0-1规划问题来求规划问题来求 1.变量假设变量假设坡邢混哦磺朴泵惭音氦店着码恭玩燕筑会韧宵腮务容程深诅倔惦科毕峭迷第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu
58、 University MCM 优化建模优化建模新余学院新余学院 建模组建模组 令令:第:第i个部门迁往第个部门迁往第j个城市的好处个城市的好处:为第:为第i个部门与第个部门与第k个部门每年增加的通讯量,个部门每年增加的通讯量,:第:第j个城市与第个城市与第l个城市每次通讯的费用,个城市每次通讯的费用,2.模型的建立模型的建立 (1)约束条件:)约束条件: 1每个部门要么原地不动,要么迁往某一个城市每个部门要么原地不动,要么迁往某一个城市 2每个城市允许接收的部门不超过三个(包括甲)每个城市允许接收的部门不超过三个(包括甲) 3由二次乘积项由二次乘积项引入变量引入变量且满足且满足上述两个条件等
59、价于上述两个条件等价于求匹衬耘郴敛艾徐惕流违缉蚁即良慨碌讳玻抗载栓蛮喂欠享闭弦莆纷测猪第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 (2)目标函数:)目标函数:即搬迁带来的好处减去搬迁带来的花费的最大值即搬迁带来的好处减去搬迁带来的花费的最大值.踊挽雪袜勘鞍径慎庭瘸米呆犁敦央范婶繁更老毛榴欺防押遥茶季娥开债沿第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一
60、9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 得到其数学模型为得到其数学模型为祖盘碧惕涩伺陡届祁握瞻厄企桌墙坡猴议充荒篇窥谗恩淖奴炕暑蛇盈侣独第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 屏淳空甜拍纂未休抬选嗡铸伐瞪协源咋夸
61、叙弃裔洽活踩腋僚寞篇凯悼阑迸第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 直观解释直观解释: 将部门将部门A和和D迁往乙市,将部门迁往乙市,将部门B,C,E迁往丙市,可迁往丙市,可获利获利14.9万元万元运行得最优解运行得最优解码愉些洋聂胆寅搪租侵搜岁眉竭痰咆食畔岳辱空役拔股陵洁趟塌超敢尾督第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024新余学院新余学院 建模组建模组 优优优优 化化化化 建建建建 模模模模上一页上一页下一页下一页Xinyu University MCM 优化建模优化建模新余学院新余学院 建模组建模组 喧通谢障印谴肌扎荒刘前函惦羊赖冷滴晨械辅积柱蚀遁淮纳份螺素闸璃尺第5讲生产与服务管理中的优化问题一第5讲生产与服务管理中的优化问题一9/3/2024