《第二节对偶单纯形法》由会员分享,可在线阅读,更多相关《第二节对偶单纯形法(18页珍藏版)》请在金锄头文库上搜索。
1、对偶单纯形法不是用单纯形法求解对偶问题,而是借助于对偶关系和对偶理论,用单纯形法求解原问题2.3 对偶单纯形法单纯形法换基迭代的前提是所选基必须是可行基,即其对应的解必须是基本可行解而对偶单纯形法允许从非基本可行解开始进行换基迭代目标前提单纯形法前提目标对偶单纯形法定理3.4若原始问题的最优解存在,则用单纯形法求解时,其对偶问题的最优解可同时在最优单纯形表上得到,且顺次等于松弛变量或剩余变量对应的检验数的相反数回顾对偶问题2 3 0 1 0 0 0 1x3 1 0 0 1 -1 0 1x5 2 0 0 0 -1 1 2x因此,对偶单纯形法换基迭代的前提是保证对偶问题基本解的可行性原始问题的单纯
2、形表的检验数行非正意味着对偶问题基本解的可行性例例1 1 用对偶单纯形法求解线性规划问题解解 将原问题化为如下形式,写出增广矩阵初始基:初始单纯形表初始单纯形表在“b”列找出最小的负数,用它所在行的所有负数去除对应的检验数,通过最小比值法则确定轴心项,进行换基迭代.第二单纯形表第二单纯形表重复上述过程,继续换基迭代.第三单纯形表第三单纯形表“b”列元素全都非负,第三单纯形表即最优单纯形表.得原问题的最优解为最优值为 对偶单纯形法是在原问题的非基本可行解下进行换基迭代的,其前提是保证对偶问题的可行性,即保证单纯形表中所有检验数非正 总之,在单纯形表中,只要能保证原问题或对偶问题的任一可行性,即可进行换基迭代,直到找出最优解例例2 2 用对偶单纯形法求解线性规划问题解解 将原问题化为如下形式,写出增广矩阵选取初始基:初始单纯形表得初始单纯形表初始单纯形表第二单纯形表换基迭代,得第二单纯形表继续换基迭代,得第三单纯形表第二单纯形表第三单纯形表第三单纯形表即最优单纯形表,得原问题的最优解为最优值为第三单纯形表 本节作业77页3.2 用对偶单纯形法求解线性规划问题 (1)、(3)