《综合评价方法第三章》由会员分享,可在线阅读,更多相关《综合评价方法第三章(69页珍藏版)》请在金锄头文库上搜索。
1、第三章第三章 评价指标的预处理评价指标的预处理 学习重点与难点学习重点与难点学习重点与难点学习重点与难点1 1、评价指标类型的一致化方法、评价指标类型的一致化方法2 2、评价指标的无量纲化方法及选择、评价指标的无量纲化方法及选择3 3、评价指标权重系数的确定方法、评价指标权重系数的确定方法主要教学内容主要教学内容主要教学内容主要教学内容 第一节第一节 评价指标类型的一致化评价指标类型的一致化第二节第二节 评价指标的无量纲化评价指标的无量纲化 第第三三节节 评价指标权重系数的确定评价指标权重系数的确定 第一节第一节第一节第一节 评价指标类型的一致化评价指标类型的一致化评价指标类型的一致化评价指标
2、类型的一致化一、一、 评价指标的取值类型评价指标的取值类型 1 1、“极大型极大型”指标指标 是指人们期望该指标的是指人们期望该指标的取值越大越好取值越大越好的指标。的指标。如如产值、利润产值、利润等。等。 2 2、“极小型极小型”指标指标 是指人们期望该指标的是指人们期望该指标的取值越小越好取值越小越好的指标。的指标。 如如成本、能耗成本、能耗等。等。3 3、“居中型居中型”指标指标 是指人们既是指人们既不期望不期望该指标的该指标的取值越大取值越大越好越好,也,也不期望不期望该指标的该指标的取值越小越好取值越小越好,而是而是期望期望该指标的该指标的取值越居中越好取值越居中越好的指标。的指标。
3、如身高、体重等。如身高、体重等。4 4、“区间型区间型”指标指标 是指人们是指人们期望期望该指标的该指标的取值落在某个取值落在某个区间区间内为最佳的指标。内为最佳的指标。 高校高校资产负债率资产负债率通常控制在通常控制在0 050%50%之间的某个之间的某个合适合适范围范围内内, ,这样既能保证高校利用有限资产来筹集更多资金这样既能保证高校利用有限资产来筹集更多资金, ,充分发挥出借债的充分发挥出借债的财务杠杆效应财务杠杆效应, ,进而进而实现高校资产的保实现高校资产的保值、增值值、增值;又能保证借债给高校带来的;又能保证借债给高校带来的收益多于高校为债收益多于高校为债务所支付的利息务所支付的
4、利息, ,即确保即确保负债所承担的利率低于高校的资负债所承担的利率低于高校的资产盈利率产盈利率, ,以证明高校实施负债经营策略的以证明高校实施负债经营策略的合理性和可行合理性和可行性。性。 在西方国家在西方国家,1992,199220022002年主要企业的平均年主要企业的平均资产负债率在资产负债率在45%45%60%60%之间之间, ,其中美国其中美国63%63%、德国、德国62%62%、法国、法国58%58%、加拿大、加拿大49%49%。与此相比。与此相比, ,我国我国企业企业的的资产负债率偏高资产负债率偏高, ,我国我国同期同期全部独立核算全部独立核算企业企业资产负债率约为资产负债率约为
5、55%55%65%65%。从我国其它行业来看。从我国其它行业来看, ,不同行业的资产负债率也各不相同不同行业的资产负债率也各不相同, ,例如交通、例如交通、运输等基础行业为运输等基础行业为50%50%左右左右, ,加工业为加工业为65%65%左右左右, ,商商贸业为贸业为80%80%左右。左右。 二、评价二、评价二、评价二、评价指标类型的一致化必要性指标类型的一致化必要性指标类型的一致化必要性指标类型的一致化必要性 若评价指标体系中若评价指标体系中既有既有极大型指标、极小型指极大型指标、极小型指标,标,又有又有居中型指标或区间型指标,但在居中型指标或区间型指标,但在计算综合计算综合评价结果之前
6、评价结果之前并并没有没有对评价指标进行对评价指标进行指标类型的一指标类型的一致化处理致化处理,那么那么经过综合评价函数计算经过综合评价函数计算得到的综合得到的综合评价数值评价数值是越大越好、或是越小越好、或是越居中是越大越好、或是越小越好、或是越居中越好就越好就没有评判的标准没有评判的标准。因此,在进行综合评价之。因此,在进行综合评价之前,需对评价指标作类型的一致化处理。前,需对评价指标作类型的一致化处理。三、评价三、评价三、评价三、评价指标类型的一致化方法指标类型的一致化方法指标类型的一致化方法指标类型的一致化方法 通常采用评价指标类型的一致化方法是通常采用评价指标类型的一致化方法是将极小型
7、指标、居中型指标、区间型指标将极小型指标、居中型指标、区间型指标转化为极大型指标转化为极大型指标。1 1、对于极小型指标、对于极小型指标 ,令,令 或或式中,式中, 为指标为指标 的一个允许上界。的一个允许上界。2 2、对于居中型指标、对于居中型指标 ,令,令式中,式中, 为指标为指标 的一个允许下界,的一个允许下界, 为指标为指标 的一个允许上界。的一个允许上界。3 3、对于区间型指标对于区间型指标 ,令,令式中,式中, 为指标为指标 的最佳稳定区间,的最佳稳定区间, 、 分别为指标分别为指标 的上、下界。的上、下界。第二节第二节第二节第二节 评价评价评价评价指标的无量纲化指标的无量纲化指标
8、的无量纲化指标的无量纲化一、指标一、指标无量纲化及其意义无量纲化及其意义1 1、指标无量纲化、指标无量纲化也叫做指标数据的也叫做指标数据的标准化、规范化标准化、规范化,是通过,是通过数数学变换学变换来来消除原始指标量纲影响消除原始指标量纲影响的方法。的方法。2 2、意义、意义为了尽可能地为了尽可能地反映实际情况反映实际情况,排除由于各项指,排除由于各项指标的标的量纲不同量纲不同以及其以及其数值数量级数值数量级间的间的悬殊差别悬殊差别所所带来的影响,带来的影响,避免不合理现象避免不合理现象的发生,需要对评的发生,需要对评价指标作无量纲化处理。价指标作无量纲化处理。不同部门员工评分如何排名不同部门
9、员工评分如何排名不同部门员工评分如何排名不同部门员工评分如何排名? ?部门员工评分部门经理AA1120A2109A3105部门经理BB1103B2101B399部门经理CC199C290C386二二二二 无无无无量纲化方法量纲化方法量纲化方法量纲化方法若无特殊说明,以下所若无特殊说明,以下所考虑的指标考虑的指标 为为极大型指标极大型指标,其观测值为,其观测值为 。1 1、标准化处理方法标准化处理方法式中,式中, 、 分别为第分别为第 项指标观测值的(样本)项指标观测值的(样本)平均值和(样本)标准差,平均值和(样本)标准差, 为标准观测值。为标准观测值。特点:特点:(1 1)样本)样本平均值为
10、平均值为0 0,方差为,方差为1 1;(2 2)区间不确定区间不确定,处理后各指标处理后各指标的最大值、最的最大值、最小值不相同小值不相同;(3 3)对于)对于指标值恒定指标值恒定的情况的情况不适用不适用;(4 4)对于要求指标值)对于要求指标值 的评价方法(如几何的评价方法(如几何加权平均法)加权平均法)不适用不适用。2 2、极值处理方法、极值处理方法式中,式中,特点:特点:(1 1) ,最大值为最大值为1 1,最小值为最小值为0 0; (2 2)对于)对于指标值恒定指标值恒定的情况的情况不适用不适用(分母为(分母为0 0)。3 3、线性比例法、线性比例法 为一特殊点,一般可取为为一特殊点,
11、一般可取为 、 或或 。 特点:特点:(1 1)要求)要求 。(2 2)当时)当时 , ,有最小值有最小值1 1,无固定的,无固定的最大值;最大值;(3 3)当时)当时 , ,有最大值有最大值1 1,无固定的,无固定的最小值;最小值; (4 4)当时)当时 , ,取值范围不固定,取值范围不固定, 。4 4、归一化处理法、归一化处理法特点:特点:可看成是线性比例法的一种可看成是线性比例法的一种特例特例,要求,要求 。当时当时 , ,无固定的最大值、最小值,无固定的最大值、最小值, 。5 5、向量规范法、向量规范法特点:特点: 当当 时,时, ,无固定的最大值、最小值无固定的最大值、最小值, 。6
12、 6、功效系数法、功效系数法 式中,式中, 、 分别为指标分别为指标 的满意值和不容许值;的满意值和不容许值; 、 均为已知正常数,均为已知正常数, 的作用是对变换后的值进行的作用是对变换后的值进行“平移平移”, 的作用是对变换后的值进行的作用是对变换后的值进行“放大放大”或或“缩小缩小”。 特点:可看成是更普遍意义下的一种特点:可看成是更普遍意义下的一种极值处理极值处理法法。取值。取值范围确定范围确定,最大值为,最大值为 ,最小值为,最小值为 。三、无量纲化方法的选择原则三、无量纲化方法的选择原则三、无量纲化方法的选择原则三、无量纲化方法的选择原则(一)(一)理想理想无量纲化方法满足的无量纲
13、化方法满足的假设条件(或无假设条件(或无量纲化性质)量纲化性质)1 1、单调性。、单调性。要求无量纲化后的数据要求无量纲化后的数据保留原有保留原有数据数据之间的之间的序关系序关系。2 2、差异比不变性。、差异比不变性。要求无量纲化后的数据要求无量纲化后的数据保留原保留原有有数据之间对于某个数据之间对于某个标准量标准量的的比较关系比较关系。3 3、平移无关性。、平移无关性。对原始数据进行对原始数据进行“平移平移”变换变换不会影响不会影响无量纲化后的无量纲化后的结果结果。4 4、缩放无关性。、缩放无关性。对原始数据进行对原始数据进行“缩小缩小”或或“放大放大”变换变换不会影响不会影响无量纲化后的无
14、量纲化后的结结果。果。5 5、区间稳定性。、区间稳定性。对对任意一指标任意一指标原始数据的原始数据的无量纲化无量纲化处理结果处理结果都处在一个都处在一个确定的取值确定的取值范围内。范围内。6 6、总量恒定性。、总量恒定性。对对任意一指标任意一指标无量纲化无量纲化处处理后的标准值理后的标准值之和之和为一为一恒定的常数恒定的常数。线性无量纲化方法及性质对应表线性无量纲化方法及性质对应表线性无量纲化方法及性质对应表线性无量纲化方法及性质对应表无量纲方法单调性差异比不变性平移无关性缩放无关性区间稳定性总量恒定性标准处理法极值处理法线性比例法( )线性比例法( )线性比例法( )归一化处理法向量规范法功
15、效系数法(二)选择原则(二)选择原则 满足满足以上以上性质越多性质越多,说明该方法,说明该方法越优越优良良。相比较而言,。相比较而言,标准化处理方法、极值标准化处理方法、极值处理方法以及功效系数法满足的性质最多处理方法以及功效系数法满足的性质最多,因而相对于其他方法来说更为优良。因而相对于其他方法来说更为优良。 同时这与应用中大量使用这同时这与应用中大量使用这3 3种方法的种方法的实际情况是相吻合的实际情况是相吻合的。第三节第三节第三节第三节 评价评价评价评价指标权重系数的确定指标权重系数的确定指标权重系数的确定指标权重系数的确定一、权数的分类一、权数的分类二、赋权方法的分类二、赋权方法的分类
16、一、权数的分类一、权数的分类(一)按权数的性质分类(一)按权数的性质分类 在对某种事物进行分类时在对某种事物进行分类时, , 一般要先一般要先按该事物的性质进行分类按该事物的性质进行分类, , 权数的分类也权数的分类也是如此。权数按其性质不同可以分为是如此。权数按其性质不同可以分为实质实质性权数性权数和和虚拟性虚拟性权数两大类。权数两大类。1 1、实质性权数、实质性权数、实质性权数、实质性权数 实质性权数实质性权数包括分组数列中标志值出包括分组数列中标志值出现的现的次数次数、综合指数中的、综合指数中的同度量因素同度量因素、时、时点数列中的点数列中的时间间隔时间间隔等。等。 这些权数有两个共同的
17、特征这些权数有两个共同的特征: : 一是权一是权数本身就是一项实实在在的、数本身就是一项实实在在的、具有现实经具有现实经济含义济含义的统计指标的统计指标, , 二是权数与被加权因二是权数与被加权因素的素的乘积乘积都形成了具有都形成了具有实质性实质性社会经济含社会经济含义的统计指标义的统计指标, , 而且权数总是构成这个统而且权数总是构成这个统计指标的一个实质性因素。因此计指标的一个实质性因素。因此, , 这种权这种权数称为实质性权数。数称为实质性权数。 (1) (1) 在计算分组数列的平均数时在计算分组数列的平均数时, , 无论是无论是算术平均数、几何平均数还是调和平均数算术平均数、几何平均数
18、还是调和平均数, , 只要每组中只要每组中标志值出现的次数标志值出现的次数不完全相同不完全相同, , 那么就需要以次数为权数进行加权处理那么就需要以次数为权数进行加权处理, , 因为因为次数次数对平均数的大小起着一种对平均数的大小起着一种权衡轻权衡轻重重的作用。的作用。学习成绩人数0-60260-701570-802080-90890-1005合计50(2) (2) 在计算综合指数时在计算综合指数时, , 必须把不能直接必须把不能直接相加的总体单位标志值相加的总体单位标志值, , 通过通过同度量因素同度量因素过渡到另一种可以相加的总体单位标志值。过渡到另一种可以相加的总体单位标志值。由于复杂现
19、象的总体包括多种要素由于复杂现象的总体包括多种要素, , 各要各要素同度量因素的具体数值便组成一种同度素同度量因素的具体数值便组成一种同度量因素的结构量因素的结构, , 正是这种同度量因素的结正是这种同度量因素的结构对各要素起了权衡轻重的作用。因此构对各要素起了权衡轻重的作用。因此, , 同度量因素同度量因素在发挥同度量作用的同时也在发挥同度量作用的同时也肩肩负着权数负着权数的重任。的重任。例:计算(例:计算(1)各种商品的价格指数和销售量指数。)各种商品的价格指数和销售量指数。 (2)全部商品的价格指数和销售量指数。)全部商品的价格指数和销售量指数。个体指数个体指数复杂现象总体:不能直接加总
20、或不能直接综合对比的现象。复杂现象总体:不能直接加总或不能直接综合对比的现象。总指数:反映复杂现象总体综合变动状况的指数。总指数:反映复杂现象总体综合变动状况的指数。例:计算(例:计算(1)各种商品的价格指数和销售量指数。)各种商品的价格指数和销售量指数。 (2)全部商品的价格指数和销售量指数。)全部商品的价格指数和销售量指数。 原理:原理:1.引入一个媒介因素引入一个媒介因素同度量因素同度量因素,解决不能直接加总,解决不能直接加总的问题。的问题。 2.将同度量因素将同度量因素固定于某一时期固定于某一时期。同度量因素同度量因素先综合,后对比先综合,后对比。综合指数的编制原理综合指数的编制原理综
21、合指数的编制原理综合指数的编制原理(3) (3) 时点数列中各个时点上指标值的重要时点数列中各个时点上指标值的重要性往往不同。这种不同主要表现在各指标性往往不同。这种不同主要表现在各指标值所代表的值所代表的时间距离时间距离或或时间间隔时间间隔的差异上。的差异上。因此因此, , 在时点数列序时平均数的计算中在时点数列序时平均数的计算中, , 必然以必然以时间间隔为权数时间间隔为权数进行加工处理进行加工处理, , 即即这种时间间隔的长短对各时点指标值起着这种时间间隔的长短对各时点指标值起着权衡轻重的作用。权衡轻重的作用。某企业某企业5 5月份每日实有人数资料如下:月份每日实有人数资料如下:日日日日
22、 期期期期1919日日日日 10151015日日日日 16221622日日日日 23312331日日日日实有人数实有人数实有人数实有人数 780 784 786 783780 784 786 783解解【例例】(4) (4) 总体的计划完成综合指标实际上是各单位计总体的计划完成综合指标实际上是各单位计划完成相对数的总体平均数。由于各单位计划完划完成相对数的总体平均数。由于各单位计划完成百分数是分母数不同的相对数成百分数是分母数不同的相对数, , 所以不能将它所以不能将它们直接加总求平均们直接加总求平均, , 只能通过各单位的计划数来只能通过各单位的计划数来计算总体计划完成综合指标计算总体计划完
23、成综合指标, , 使各单位的计划完使各单位的计划完成数对各单位的计划完成百分数在其综合指标的成数对各单位的计划完成百分数在其综合指标的计算中起着权衡轻重的作用。也就是说计算中起着权衡轻重的作用。也就是说, , 即使有即使有两个单位的计划完成百分数相等两个单位的计划完成百分数相等, , 但若这两个单但若这两个单位的计划数不等位的计划数不等, , 那么这两个单位的实际完成量那么这两个单位的实际完成量在总体计划完成总量中所占的比重就不同。因此在总体计划完成总量中所占的比重就不同。因此, , 在计算总体计划完成综合指标时在计算总体计划完成综合指标时, , 必须以各单位必须以各单位的计划完成数为权数进行
24、加权处理。的计划完成数为权数进行加权处理。月月 份份一一二二三三计划利划利润(万元)(万元)200300400利利润计划完成程度(划完成程度()125120150某工厂某年一季度利润计划完成情况如下某工厂某年一季度利润计划完成情况如下因为因为所以,该厂一季度的计划平均完成程度为所以,该厂一季度的计划平均完成程度为 :【例例】2 2、虚拟性权数、虚拟性权数、虚拟性权数、虚拟性权数 虚拟性权数虚拟性权数包括包括可靠性权数可靠性权数、估价权估价权数数和和信息量权数信息量权数。这些权数的共同特征是这些权数的共同特征是: : 权数本身权数本身不具有不具有实际经济内涵实际经济内涵, , 只是通过其数值的大
25、小来只是通过其数值的大小来揭示各个相应揭示各个相应指标指标在事物运行中所在事物运行中所发挥功发挥功能能、所起作用所起作用的的相对大小相对大小。也就是说。也就是说, , 这这些权数不是构成统计指标的实质性因素些权数不是构成统计指标的实质性因素, , 而只是通过其数值的大小来呈现各个相应而只是通过其数值的大小来呈现各个相应指标对事物变化总结果指标对事物变化总结果影响的程度影响的程度大小。大小。因此因此, , 我们把这种权数称为虚拟性权数。我们把这种权数称为虚拟性权数。(1) (1) 可靠性权数可靠性权数是从评价或预测的角度来是从评价或预测的角度来看待指标数值的看待指标数值的可靠性可靠性大小大小,
26、, 以判定其以判定其重重要性程度要性程度而确定的权数。如果指标数据的而确定的权数。如果指标数据的可靠性较高可靠性较高, , 则应在评价或预测中起较大则应在评价或预测中起较大的作用的作用, , 相应地赋给较大的权数相应地赋给较大的权数; ; 反之反之, , 可靠性较低可靠性较低, , 所起作用较小所起作用较小, , 其权数也就其权数也就较小。例如较小。例如, , 在统计预测中在统计预测中, , 考虑到时间考虑到时间序列各观察值的远近对预测未来的重要性序列各观察值的远近对预测未来的重要性不同不同, , 就得借助权数来增添近期数值的作就得借助权数来增添近期数值的作用用, , 以提高预测结果的准确程度
27、。以提高预测结果的准确程度。(2) (2) 估价权数估价权数是从是从评价者评价者的的角度角度来估计各来估计各个指标本身重要性程度的一种权数。在多个指标本身重要性程度的一种权数。在多指标综合评价中指标综合评价中, , 影响指标相对重要性的影响指标相对重要性的因素因素, , 除了直接跟除了直接跟综合评价的目的综合评价的目的有关外有关外, , 还包括当时的还包括当时的社会环境社会环境、经济政策经济政策等多种等多种人文因素。这些人文评价因素难以准确量人文因素。这些人文评价因素难以准确量化化, , 它们对各指标相对重要的影响程度如它们对各指标相对重要的影响程度如何何, ,必须由必须由评价者评价者或或相关
28、专家相关专家凭着各自的凭着各自的经经验验和按照一定的和按照一定的判断准则判断准则来进行来进行主观主观估计。估计。估价权数就是这种价值判断的结果。估价权数就是这种价值判断的结果。(3) (3) 信息量权数信息量权数是根据是根据评价指标评价指标所所包含包含被评事物被评事物有效信息有效信息的多少来判定该指标重要性大小的一种的多少来判定该指标重要性大小的一种权数。该权数的权数。该权数的设计思想设计思想是是: : 用评价指标来区分用评价指标来区分各个被评价对象各个被评价对象, , 如果某指标数值能如果某指标数值能明确地区分明确地区分开开各个被评价对象各个被评价对象, , 说明该指标对于这项评价所说明该指
29、标对于这项评价所包含的包含的分辨信息分辨信息比较比较丰富丰富, , 则应赋之较大权数则应赋之较大权数; ; 反之反之, ,赋予较小权数。由于可以赋予较小权数。由于可以从很多方面从很多方面来体现来体现指标所包含有效信息的多少指标所包含有效信息的多少, , 因此因此从从评价指标所评价指标所揭示被评事物有效信息揭示被评事物有效信息的不同的不同角度角度, , 将信息量权将信息量权数分为变异权数、比重权数、排序权数、距离权数分为变异权数、比重权数、排序权数、距离权数、影响权数、独立性权数和系统效应权数。数、影响权数、独立性权数和系统效应权数。( (二二) ) 按权数的产生方式分类按权数的产生方式分类权数
30、按其产生方式不同可以分为权数按其产生方式不同可以分为选择权选择权和和生成权生成权, , 其中的其中的生成权生成权又可以分为又可以分为伴随生伴随生成权和专门生成权成权和专门生成权。1 1、选择权、选择权、选择权、选择权 选择权选择权, , 是指根据与被加权因素的现是指根据与被加权因素的现实经济关系来选择某个相关因素为权数实经济关系来选择某个相关因素为权数, , 而权数值的大小则是依据该相关因素的实而权数值的大小则是依据该相关因素的实际发生资料整理出来的际发生资料整理出来的, , 因此因此, , 它主要是它主要是实质性权数实质性权数的产生方式。例如的产生方式。例如, ,在综合价格在综合价格指数中指
31、数中, , 根据价格与物量的关系根据价格与物量的关系, , 选择销选择销售量作为权数售量作为权数, , 权数资料是根据市场调查权数资料是根据市场调查所得的销售量数据加工整理得到的。所得的销售量数据加工整理得到的。2 2、生成权、生成权、生成权、生成权 生成权生成权, , 是指按照一定的规则和相应是指按照一定的规则和相应的数学方法处理后才形成的权数。虚拟性的数学方法处理后才形成的权数。虚拟性权数仅仅是为了某种目的而从特定的角度权数仅仅是为了某种目的而从特定的角度构造的一组数值构造的一组数值, , 以表明被加权因素的相以表明被加权因素的相对重要程度。它既不像实质性权数那样是对重要程度。它既不像实质
32、性权数那样是一个实体因素一个实体因素, , 也没有一个事前的实际发也没有一个事前的实际发生值可供选择。所以说生值可供选择。所以说, , 生成权生成权主要是主要是虚虚拟性权数拟性权数的产生方式的产生方式, , 生成权按其生成过生成权按其生成过程不同又可分为伴随生成权和专门生成权。程不同又可分为伴随生成权和专门生成权。(1) (1) 伴随生成权伴随生成权是指是指伴随其他过程伴随其他过程同时进同时进行而生成的权数。例如行而生成的权数。例如, , 用主分量分析进用主分量分析进行多指标综合评价时行多指标综合评价时, , 形成了分量与原始形成了分量与原始变量之间的线性关系式变量之间的线性关系式, , 各原
33、始变量前面各原始变量前面的线性系数自然就成了指标权数。这种权的线性系数自然就成了指标权数。这种权数就属于伴随生成权数就属于伴随生成权, , 因为权数的产生过因为权数的产生过程与变量程与变量分量的转换过程是结合在分量的转换过程是结合在一起的。此外一起的。此外, , 因子分析中的分子得分系因子分析中的分子得分系数也是伴随生成权。数也是伴随生成权。(2) (2) 专门生成权专门生成权是由评价组织者是由评价组织者选用一定选用一定的规则的规则和和数学方法专门设计数学方法专门设计出一套权数生出一套权数生成过程而产生的权数。如用专家咨询法得成过程而产生的权数。如用专家咨询法得到的估价权数、用指数平滑法得到的
34、可靠到的估价权数、用指数平滑法得到的可靠性权数以及用变异系数法得到的信息量权性权数以及用变异系数法得到的信息量权数等就属于专门生成权。数等就属于专门生成权。大多数虚拟权数大多数虚拟权数都属于都属于专门生成权专门生成权。( (三三) ) 按权数的应用范围分类按权数的应用范围分类上述两种分类方案都是在前人研究成果基础上的上述两种分类方案都是在前人研究成果基础上的进一步完善。鉴于各种权数都源于实践进一步完善。鉴于各种权数都源于实践, , 都是根都是根据实际工作的需要而构建的据实际工作的需要而构建的, , 都是在对分析、解都是在对分析、解决实际问题的方式方法从理论上进行高度地概括、决实际问题的方式方法
35、从理论上进行高度地概括、总结的过程中提炼出来的总结的过程中提炼出来的, , 这让我们联想到这让我们联想到, , 如如果将权数从果将权数从其适用范围的角度其适用范围的角度进行分类进行分类, , 不失为不失为一种较好的分类方案。循着这条思路一种较好的分类方案。循着这条思路, , 将权数按将权数按其应用范围分为基础权数、评价权数和预测权数其应用范围分为基础权数、评价权数和预测权数三类。三类。1 1、基础权数、基础权数、基础权数、基础权数基础权数基础权数是指用于社会经济统计基础指标是指用于社会经济统计基础指标中的权数。它主要是中的权数。它主要是实质性权数实质性权数, , 包括分包括分组数列中的次数、时
36、间数列中的时间间隔、组数列中的次数、时间数列中的时间间隔、综合指数中同度量因素以及总体相对数中综合指数中同度量因素以及总体相对数中的对比基数等。因为组平均数、序时平均的对比基数等。因为组平均数、序时平均数、指数和总体相对数等不仅都是社会经数、指数和总体相对数等不仅都是社会经济统计中的基础指标济统计中的基础指标, , 而且也是用于评价而且也是用于评价和预测的基本指标和预测的基本指标, , 所以称它们的权数为所以称它们的权数为基础权数。基础权数。2 2、评价权数、评价权数、评价权数、评价权数评价权数评价权数是指用于评价是指用于评价( (尤其是多指标综合尤其是多指标综合评价评价) ) 时的一组数值体
37、系。它主要包括时的一组数值体系。它主要包括虚虚拟权数拟权数中的中的估价权数估价权数和和信息量权数信息量权数, , 这些这些权数都是用来衡量被评事物总体内部诸因权数都是用来衡量被评事物总体内部诸因素之间的相对重要程度的。应该指出的是素之间的相对重要程度的。应该指出的是, , 评价权数同样适用于多目标决策。评价权数同样适用于多目标决策。3 3、预测权数、预测权数、预测权数、预测权数预测权数预测权数是指用于是指用于统计预测统计预测时的权数。在时的权数。在根据时间序列进行统计预测时根据时间序列进行统计预测时, , 为了体现为了体现各个时期指标数据的各个时期指标数据的可靠性大小可靠性大小及其及其所起所起
38、作用作用的大小的大小, , 我们需要按照一定的数学方我们需要按照一定的数学方法确定一组预测权数。因此法确定一组预测权数。因此, , 从性质上来从性质上来说说, , 预测权数预测权数主要是指主要是指可靠性权数可靠性权数。权数分类体系权数分类体系权数分类体系权数分类体系统计权数按性质分按应用范围分按产生方式分 实质性权数分组平均数的次数基础权数选择权序时平均数的时间间隔综合指数的同度量因素总体相对数中的计划数 虚拟性权数可靠性权数预测权数生成权估价权数 评价权数信息量权数比重权数排序权数距离权数变异权数影响权数独立性权数系统效应权数二、赋权方法的分类二、赋权方法的分类二、赋权方法的分类二、赋权方法
39、的分类确定权数的方法五花八门确定权数的方法五花八门, , 如果收集齐全如果收集齐全了了, , 现在就有现在就有2020多种多种, , 且新的赋权方法正且新的赋权方法正在层出不穷。面对这么多的赋权方法在层出不穷。面对这么多的赋权方法, , 如如若不将其合理分类的话若不将其合理分类的话, , 当我们在实际工当我们在实际工作中需要确定一组具体权数时作中需要确定一组具体权数时, ,势必眼花缭势必眼花缭乱乱, , 不知该用哪种为好不知该用哪种为好, , 所以有必要将各所以有必要将各种赋权方法进行归类种赋权方法进行归类, , 以便于在实际应用以便于在实际应用时有针对性地选择适合的赋权方法。时有针对性地选择
40、适合的赋权方法。 由于不同性质的权数必定有不同的确由于不同性质的权数必定有不同的确定方法定方法, , 因此因此, , 既应根据既应根据权数性质权数性质的不同的不同把所有把所有确定权数的方法确定权数的方法进行进行归类归类, , 又应按又应按赋权时赋权时原始数据来源原始数据来源的不同的不同对赋权方法对赋权方法进进行行分类分类, , 以使权数的分类与赋权方法的归以使权数的分类与赋权方法的归类和分类相互对应类和分类相互对应, , 使二者相辅相成组成使二者相辅相成组成一套一套完整的分类对应关系完整的分类对应关系体系。体系。(一)按权数性质对赋权方法的归类(一)按权数性质对赋权方法的归类 不同性质的权数有
41、着不同的确定方法不同性质的权数有着不同的确定方法, , 也就是说不同的赋权方法分别归属于不同也就是说不同的赋权方法分别归属于不同性质的权数。为此性质的权数。为此, , 这里将各种赋权方法这里将各种赋权方法从权数性质从权数性质的角度进行了归类。的角度进行了归类。1 1、实质性权数的确定方法、实质性权数的确定方法 实质性权数实质性权数的确定方法主要是的确定方法主要是选择赋选择赋权法权法, , 即根据不同的计算对象选择某种合即根据不同的计算对象选择某种合适的因素作为权数适的因素作为权数, , 例如综合指数中的销例如综合指数中的销售量。售量。2 2、虚拟性权数的确定方法、虚拟性权数的确定方法 由于由于
42、虚拟权数虚拟权数包括包括可靠性权数可靠性权数、信息信息量权数量权数和和估价权数估价权数三种三种, , 而这三种权数的而这三种权数的确定方法又大不相同确定方法又大不相同, , 因此需要区别对待。因此需要区别对待。(1) (1) 可靠性权数可靠性权数的确定方法主要有的确定方法主要有加权移加权移动平均法动平均法、指数平滑法指数平滑法、折扣最小平方法折扣最小平方法等。等。(2) (2) 由于由于信息量的涵义信息量的涵义非常非常丰富丰富, , 人们可以从很人们可以从很多角度来确定指标体系中各个指标所包含对于综多角度来确定指标体系中各个指标所包含对于综合评价有用的合评价有用的分辨信息量分辨信息量, , 因
43、此信息量权数确定因此信息量权数确定方法非常多方法非常多, , 概括起来主要有概括起来主要有: : 确定比重权数的确定比重权数的熵值法熵值法, , 确定变异权数的确定变异权数的变异系数法变异系数法, , 确定排序确定排序权数的权数的秩和比法及等级相关系数法秩和比法及等级相关系数法, , 确定系统效确定系统效应权数的第一应权数的第一主分量分析法或坎蒂雷法主分量分析法或坎蒂雷法, , 确定独确定独立性权数的立性权数的简单相关、复相关和偏相关系数法简单相关、复相关和偏相关系数法, , 确定影响权数的确定影响权数的影响矩阵法、相关系数矩阵法影响矩阵法、相关系数矩阵法等。等。(3) (3) 估价权数估价权
44、数的确定方法有的确定方法有: : 专家直接估权法专家直接估权法( (即即德尔菲法德尔菲法) ) 、两两比较互补式评分法、两两比较、两两比较互补式评分法、两两比较互反式评分法、层次分析法、环比评分法、排序互反式评分法、层次分析法、环比评分法、排序对数商法和排序二项系数法等。从方法体系的角对数商法和排序二项系数法等。从方法体系的角度看度看, , 专家直接估权法专家直接估权法自成一类自成一类, , 两两比较互补、两两比较互补、互反式评分法和层次分析法以及环比评分法属于互反式评分法和层次分析法以及环比评分法属于比较评分法比较评分法, , 排序对数商法与排序二项系数法则排序对数商法与排序二项系数法则属于
45、属于先定性排序后定量赋权法先定性排序后定量赋权法。估价权数之所以。估价权数之所以有这么多种确定方法有这么多种确定方法, , 取决于取决于评价者或专家自身评价者或专家自身业务素质业务素质的不同和的不同和评价指标体系的不同评价指标体系的不同, , 从而致从而致使他们在对指标权重进行估计时采用的数学处理使他们在对指标权重进行估计时采用的数学处理方法也不同。方法也不同。( (二二) ) 按赋权时原始数据的来源对赋权方法按赋权时原始数据的来源对赋权方法分类分类 由于现有的由于现有的2020多种赋权方法在构建权多种赋权方法在构建权数时所用的数时所用的原始数据原始数据既有既有主观主观又有又有客观客观的的,
46、, 因此可从赋权时数据来源的角度将各种赋因此可从赋权时数据来源的角度将各种赋权法划分成权法划分成主观赋权法主观赋权法和和客观赋权法客观赋权法两类两类, , 此外此外, , 还有还有组合赋权法组合赋权法。1 1、主观赋权法、主观赋权法、主观赋权法、主观赋权法 主观赋权法主观赋权法是以用于构建权数的是以用于构建权数的原始原始数据数据来自于来自于评价者评价者对所研究对象各个指标对所研究对象各个指标的的主观判断主观判断, , 它主要包括它主要包括: : 估价权数中的估价权数中的德尔菲法、两两比较互补和互反式评分法、德尔菲法、两两比较互补和互反式评分法、层次分析法、环比评分法、排序对数商法、层次分析法、
47、环比评分法、排序对数商法、排序二项系数法等方法排序二项系数法等方法, , 以及可靠性权数以及可靠性权数中的加权移动平均法、指数平滑法、折扣中的加权移动平均法、指数平滑法、折扣最小平方法、三点法等方法。概括之最小平方法、三点法等方法。概括之, , 主主观赋权法观赋权法主要是指主要是指虚拟性权数虚拟性权数中的中的估价权估价权数数和和可靠性权数可靠性权数的赋权方法。的赋权方法。2 2、客观赋权法、客观赋权法、客观赋权法、客观赋权法 客观赋权法客观赋权法是以所研究对象各个是以所研究对象各个指标指标实际观测值实际观测值为原始数据来构建权数的方法为原始数据来构建权数的方法, , 它主要包括它主要包括: :
48、 实质性权数中的选择赋权法实质性权数中的选择赋权法, , 信息量权数中的主分量分析法、因子分析信息量权数中的主分量分析法、因子分析法、变异系数法、熵值法、秩和比法、秩法、变异系数法、熵值法、秩和比法、秩和法、等级相关系数法、影响矩阵法、相和法、等级相关系数法、影响矩阵法、相关系数矩阵法、双极值距离法、坎蒂雷法关系数矩阵法、双极值距离法、坎蒂雷法等方法。概括之等方法。概括之, , 客观赋权法客观赋权法主要是指主要是指实实质性权数质性权数以及以及虚拟性权数中信息量权数虚拟性权数中信息量权数的的赋权方法。赋权方法。3 3、组合赋权法、组合赋权法、组合赋权法、组合赋权法 组合赋权法组合赋权法是指原始数
49、据来源于主观赋权法是指原始数据来源于主观赋权法和客观赋权法结果的赋权方法。由于主观赋权法和客观赋权法结果的赋权方法。由于主观赋权法和客观赋权法和客观赋权法各有其优缺点各有其优缺点, , 因此因此, , 如果将主观如果将主观法所得权数与客观法所得权数按照一定的数学方法所得权数与客观法所得权数按照一定的数学方法进行组合的话法进行组合的话, , 就可能产生出更为合理的权数就可能产生出更为合理的权数, , 这就是在主、客观赋权法的基础上形成的组合赋这就是在主、客观赋权法的基础上形成的组合赋权法。即权法。即组合赋权法组合赋权法的的原始数据原始数据来自于来自于主观赋权主观赋权法和客观赋权法的结果法和客观赋
50、权法的结果, , 可是并非各种主、客观可是并非各种主、客观赋权法之间可以随意组合赋权法之间可以随意组合, , 关于这样的问题有待关于这样的问题有待于今后的深入研讨。于今后的深入研讨。权数分类与赋权方法分类的对应关系权数分类与赋权方法分类的对应关系权数分类与赋权方法分类的对应关系权数分类与赋权方法分类的对应关系权数分类赋权方法的归类赋权方法的分类实质性权数选择赋权法 客观赋权法虚拟性权数信息量权数比重权数熵值法变异权数变异系数法排序权数秩和比法、秩和法、等级相关系数法距离权数双极值距离法影响权数影响矩阵法独立性权数 相关系数矩阵法简单相关系数法复相关系数法偏相关系数法系统效应权数主成分分析法、因
51、子分析法、坎蒂雷法 估价权数德尔菲法 主观赋权法比较评分法层次分析法先定性排序后定量赋权排序对数商法排序二项系数法可靠性权数移动平均法、指数平滑法等三三三三 权数的确定方法权数的确定方法权数的确定方法权数的确定方法(一)德尔菲法(一)德尔菲法 这是一种向专家发函专家发函、征求意见征求意见的调研方调研方法法。评价者可根据评价目标评价目标及评价对象评价对象的特征,在所设计的调查表中列出一系列的评价指标,分别征询分别征询专家对所设计的评价指标的权数权数,然后进行统计处理统计处理,并反馈咨询结果反馈咨询结果,经几轮几轮咨询后,如果专家意见趋于集中意见趋于集中,则由最后最后一次咨询确定确定出具体的评价指
52、标的权数。编编号号第一次赋权第一次赋权第二次赋权第二次赋权第三次赋权第三次赋权A AB BC CA AB BC CA AB BC C1 10.50.50.30.30.20.20.50.50.30.30.20.20.50.50.30.30.20.22 20.50.50.40.40.10.10.50.50.40.40.10.10.50.50.30.30.20.23 30.40.40.30.30.30.30.50.50.30.30.20.20.50.50.30.30.20.2( (二二) )变异系数变异系数法法基本思想:在评价指标体系中,指标取值差异基本思想:在评价指标体系中,指标取值差异越大的也就
53、是越难实现的指标。越大的也就是越难实现的指标。差异越大的指标越差异越大的指标越重要,重要,因为它更能反映出参加评价的因为它更能反映出参加评价的各对象的各对象的差距。差距。评价指标体系中评价指标体系中各指标的量纲不同各指标的量纲不同,不宜直接,不宜直接比较其差异程度。为了比较其差异程度。为了消除各指标量纲不同消除各指标量纲不同的影响的影响, , 用各指标的用各指标的变异系数变异系数来衡量各项指标取值的差异程来衡量各项指标取值的差异程度。度。 各指标的变异系数各指标的变异系数式中,式中, 是第是第 项指标的标准差,项指标的标准差, 是第是第 项指标的均值;项指标的均值; 各指标的权重:各指标的权重:( (三三) ) 主成分分析法主成分分析法( (四四) )层次分析法层次分析法