《高数下曲面及其方程》由会员分享,可在线阅读,更多相关《高数下曲面及其方程(24页珍藏版)》请在金锄头文库上搜索。
1、四、二次曲面四、二次曲面第三节一、曲面方程的概念一、曲面方程的概念二、旋转曲面二、旋转曲面 三、柱面三、柱面机动 目录 上页 下页 返回 结束 曲面及其方程 第七七章 一、曲面方程的概念一、曲面方程的概念求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的化简得即说明说明: 动点轨迹为线段 AB 的垂直平分面.引例引例: :显然在此平面上的点的坐标都满足此方程, 不在此平面上的点的坐标不满足此方程.解解: :设轨迹上的动点为轨迹方程. 机动 目录 上页 下页 返回 结束 定义定义1. 如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系:(1) 曲面 S 上的任意点的坐标
2、都满足此方程;则 F( x, y, z ) = 0 叫做曲面曲面 S 的的方程方程, 曲面 S 叫做方程 F( x, y, z ) = 0 的图形图形.两个基本问题两个基本问题 : :(1) 已知一曲面作为点的几何轨迹时,(2) 不在曲面 S 上的点的坐标不满足此方程,求曲面方程.(2) 已知方程时 , 研究它所表示的几何形状( 必要时需作图 ). 机动 目录 上页 下页 返回 结束 故所求方程为例例1. 求动点到定点方程. 特别,当M0在原点时,球面方程为解解: 设轨迹上动点为即依题意距离为 R 的轨迹表示上(下)球面 .机动 目录 上页 下页 返回 结束 例例2. 研究方程解解: : 配方
3、得此方程表示:说明说明: : 如下形式的三元二次方程 ( A 0 )都可通过配方研究它的图形.其图形可能是的曲面. . 表示怎样半径为的球面.球心为 一个球面球面, 或点点 , 或虚轨迹虚轨迹.机动 目录 上页 下页 返回 结束 定义定义2. . 一条平面曲线二、旋转曲面二、旋转曲面 绕其平面上一条定直线定直线旋转一周所形成的曲面叫做旋转曲面旋转曲面.该定直线称为旋转旋转轴轴 . .例如例如 :机动 目录 上页 下页 返回 结束 建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:故旋转曲面方程为当绕 z 轴旋转时,若点给定 yoz 面上曲线 C: 则有则有该点转到机动 目录 上页 下页 返回
4、 结束 思考:思考:当曲线 C 绕 y 轴旋转时,方程如何?机动 目录 上页 下页 返回 结束 例例3. 试建立顶点在原点, 旋转轴为z 轴, 半顶角为的圆锥面方程. 解解: 在yoz面上直线L 的方程为绕z 轴旋转时,圆锥面的方程为两边平方机动 目录 上页 下页 返回 结束 例例4. 求坐标面 xoz 上的双曲线分别绕 x轴和 z 轴旋转一周所生成的旋转曲面方程. 解解: :绕 x 轴旋转绕 z 轴旋转这两种曲面都叫做旋转双曲面.所成曲面方程为所成曲面方程为机动 目录 上页 下页 返回 结束 三、二次曲面三、二次曲面三元二次方程 适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型
5、的特点进行介绍 .研究二次曲面特性的一种基本方法: 截痕法截痕法 其基本类型有: 椭球面、抛物面、双曲面、锥面的图形通常为二次曲面二次曲面. (二次项系数不全为 0 )机动 目录 上页 下页 返回 结束 1. 椭圆锥面椭圆锥面椭圆在平面 x0 或 y0 上的截痕为过原点的两直线 .可以证明, 椭圆上任一点与原点的连线均在曲面上.(我们还可以用伸缩变形的方法来得到椭圆锥面的形状。)机动 目录 上页 下页 返回 结束 沿着y轴方向伸缩b/a倍,就变为椭圆例如,把圆类似的,把空间图形 沿着y轴方向伸缩b/a倍,就变为椭圆锥面那么,圆锥面 利用圆锥面(旋转曲面)的伸缩变形来得到椭圆锥面的形状,这种方法
6、是研究曲面形状的一种较简便的方法。2 2. 椭球面椭球面机动 目录 上页 下页 返回 结束 球面是旋转椭球面的特殊情形,旋转椭球面是椭球面的特殊情形。把xoz面上的椭圆绕z轴旋转,得到的曲面称为旋转椭球面,其方程为再把旋转椭球面沿着y轴方向伸缩b/a倍,便得到椭球面。3. 双曲面双曲面(1)(1)单叶双曲面单叶双曲面 把此旋转曲面沿着y轴方向伸缩b/a倍,即得到单叶双曲面。绕z轴旋转,得到旋转单叶双曲面 机动 目录 上页 下页 返回 结束 (2) 双叶双曲面双叶双曲面P18 目录 上页 下页 返回 结束 4. 抛物面抛物面(1) 椭圆抛物面( p , q 同号)(2) 双曲抛物面(鞍形曲面)特
7、别,当 p = q 时为绕 z 轴的旋转抛物面.( p , q 同号)机动 目录 上页 下页 返回 结束 用截痕法讨论它的形状。四、柱面四、柱面引例引例. 分析方程表示怎样的曲面 .的坐标也满足方程解解: :在 xoy 面上,表示圆C, 沿曲线C平行于 z 轴的一切直线所形成的曲面称为圆圆故在空间过此点作柱面柱面. .对任意 z ,平行 z 轴的直线 l ,表示圆柱面圆柱面在圆C上任取一点 其上所有点的坐标都满足此方程,机动 目录 上页 下页 返回 结束 定义定义3. 平行定直线并沿定曲线 C 移动的直线 l 形成的轨迹叫做柱面柱面. 表示抛物柱面抛物柱面,母线平行于 z 轴;准线为xoy 面
8、上的抛物线. z 轴的椭圆柱面椭圆柱面.z 轴的平面平面.表示母线平行于 (且 z 轴在平面上)表示母线平行于C 叫做准线准线, l 叫做母线母线.机动 目录 上页 下页 返回 结束 一般地,在三维空间柱面,柱面,平行于 x 轴;平行于 y 轴;平行于 z 轴;准线 xoz 面上的曲线 l3.母线柱面,准线 xoy 面上的曲线 l1.母线准线 yoz 面上的曲线 l2. 母线机动 目录 上页 下页 返回 结束 内容小结内容小结1. 空间曲面三元方程 球面 旋转曲面如, 曲线绕 z 轴的旋转曲面: 柱面如,曲面表示母线平行 z 轴的柱面.又如,椭圆柱面, 双曲柱面, 抛物柱面等 .机动 目录 上页 下页 返回 结束 2. 二次曲面三元二次方程 椭球面 抛物面:椭圆抛物面双曲抛物面 双曲面: 单叶双曲面双叶双曲面 椭圆锥面: 机动 目录 上页 下页 返回 结束 斜率为1的直线平面解析几何中空间解析几何中方 程平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0)半径为 3 的圆以 z 轴为中心轴的圆柱面平行于 z 轴的平面思考与练习思考与练习1. 指出下列方程的图形:机动 目录 上页 下页 返回 结束 2. P318 题3 , 10机动 目录 上页 下页 返回 结束 题题10 答案答案: 在 xoy 面上