《高中数学必修五课件:1.2应用举例(人教A版必修五)》由会员分享,可在线阅读,更多相关《高中数学必修五课件:1.2应用举例(人教A版必修五)(11页珍藏版)》请在金锄头文库上搜索。
1、高度高度角度角度距离距离例例1、设、设A、B两点在河的两岸,要测量两点之间的距离。两点在河的两岸,要测量两点之间的距离。测量者在测量者在A的同测,在所在的河岸边选定一点的同测,在所在的河岸边选定一点C,测出测出AC的距离是的距离是55cm,BAC51o, ACB75o,求,求A、B两点间的距离(精确到两点间的距离(精确到0.1m)分析:已知两角一边,可以用正弦定理解三角形分析:已知两角一边,可以用正弦定理解三角形解:根据正弦定理,得解:根据正弦定理,得答:答:A,B两点间的距离为两点间的距离为65.7米。米。例例2、A、B两点都在河的对岸(不可到达),设计一种两点都在河的对岸(不可到达),设计
2、一种测量两点间的距离的方法。测量两点间的距离的方法。分析:用例分析:用例1的方法,可以计算出河的这一岸的一的方法,可以计算出河的这一岸的一点点C到对岸两点的距离,再测出到对岸两点的距离,再测出BCA的大小,的大小,借助于余弦定理可以计算出借助于余弦定理可以计算出A、B两点间的距离。两点间的距离。解:测量者可以在河岸边选定两点解:测量者可以在河岸边选定两点C、D,测得,测得CD=a,并并且在且在C、D两点分别测得两点分别测得BCA=, ACD=, CDB=, BDA=.在在ADC和和BDC中,应用正弦定理得中,应用正弦定理得计算出计算出AC和和BC后,再在后,再在ABC中,应用余弦定理计中,应用
3、余弦定理计算出算出AB两点间的距离两点间的距离练习练习1、一艘船以、一艘船以32.2n mile / hr的速度向正的速度向正北航行。在北航行。在A处看灯塔处看灯塔S在船的北偏东在船的北偏东20o的的方向,方向,30min后航行到后航行到B处,在处,在B处看灯塔处看灯塔在船的北偏东在船的北偏东65o的方向,已知距离此灯塔的方向,已知距离此灯塔6.5n mile 以外的海区为航行安全区域,这以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?艘船可以继续沿正北方向航行吗?练习练习2自动卸货汽车的车厢采用液压机构。设计时需要计算自动卸货汽车的车厢采用液压机构。设计时需要计算油泵顶杆油泵顶杆B
4、C的长度已知车厢的最大仰角是的长度已知车厢的最大仰角是60,油泵顶点,油泵顶点B与与车厢支点车厢支点A之间的距离为之间的距离为1.95m,AB与水平线之间的夹角为与水平线之间的夹角为62020,AC长为长为1.40m,计算,计算BC的长(精确到的长(精确到0.01m0.01m) (1 1)什么是最大仰角?)什么是最大仰角? 最大角度最大角度最大角度最大角度最大角度最大角度最大角度最大角度 (2 2)例题中涉及一个怎样的三角)例题中涉及一个怎样的三角形?形? 在在ABC中已知什么,要求什么?中已知什么,要求什么?CAB练习练习2自动卸货汽车的车厢采用液压机构。设计时需要计算自动卸货汽车的车厢采用
5、液压机构。设计时需要计算油泵顶杆油泵顶杆BC的长度已知车厢的最大仰角是的长度已知车厢的最大仰角是60,油泵顶点,油泵顶点B与与车厢支点车厢支点A之间的距离为之间的距离为1.95m,AB与水平线之间的夹角为与水平线之间的夹角为62020,AC长为长为1.40m,计算,计算BC的长(精确到的长(精确到0.01m0.01m) 最大角度最大角度最大角度最大角度最大角度最大角度最大角度最大角度 已知已知ABC中中AB1.95m,AC1.40m, 夹角夹角CAB6620,求,求BC解:由余弦定理,得解:由余弦定理,得答:顶杆答:顶杆BCBC约长约长1.89m。 CAB实际问题实际问题抽象概括抽象概括示意图示意图数学模型数学模型推推理理演演算算数学模型的解数学模型的解实际问题的解实际问题的解还原说明还原说明解应用题的基本思路解应用题的基本思路已知已知ABC中,三个内角中,三个内角A,B,C的对边分别是的对边分别是a,b,c,若若ABC的面积为的面积为S,且且2S=(a+b)c,求求tanC的的值。在在ABC中,如果中,如果(a+b+c)(b+c-a)=3bc,且且sinA=2sinBcosC,试确定试确定ABC的形状。的形状。