《人教版八年级数学上册第12章复习》由会员分享,可在线阅读,更多相关《人教版八年级数学上册第12章复习(25页珍藏版)》请在金锄头文库上搜索。
1、第十二章第十二章 全等三角形全等三角形一一.全等三角形全等三角形:1 1:什么是全等三角形?一个三角形经过哪些变化:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?可以得到它的全等形?2 2:全等三角形有哪些性质?:全等三角形有哪些性质?能够完全重合的两个三角形叫做全等三角形。一个三角能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。形经过平移、翻折、旋转可以得到它的全等形。(1 1):全等三角形的对应边相等、对应角相等。):全等三角形的对应边相等、对应角相等。(2 2):全等三角形的周长相等、面积相等。):全等三角形的周长相等、面积相等。(
2、3 3):全等三角形的对应边上的对应中线、角平分):全等三角形的对应边上的对应中线、角平分线、高线分别相等。线、高线分别相等。知识回顾:知识回顾:一般三角形一般三角形 全等的条件全等的条件:1.1.定义(重合)法;定义(重合)法;2.SSS2.SSS;3.SAS3.SAS;4.ASA4.ASA;5.AAS.5.AAS.直角三角形直角三角形 全等全等特有特有的条件:的条件:HL.HL.包括直角三角形包括直角三角形不包括其它形不包括其它形状的三角形状的三角形解题解题中常中常用的用的4 4种种方法方法回顾知识点:回顾知识点:边边边:边边边:三边对应相等的两个三角形全等(可简写成三边对应相等的两个三角
3、形全等(可简写成“SSSSSS”) )边角边边角边: :两边两边和和它们的夹角对应相等两个三角形全等它们的夹角对应相等两个三角形全等(可简写成(可简写成“SASSAS”) )角边角角边角: :两角和它们的夹边对应相等的两个三角形全等两角和它们的夹边对应相等的两个三角形全等(可简写成(可简写成“ASAASA”) )角角边角角边: :两角和其中一角的对边对应相等的两个三角形两角和其中一角的对边对应相等的两个三角形全等(可简写成全等(可简写成“AASAAS”) )斜边斜边. .直角边:直角边:斜边和一条直角边对应相等的两个直角斜边和一条直角边对应相等的两个直角三角形全等(可简写成三角形全等(可简写成
4、“HLHL”) )方法指引证明两个三角形全等的基本思路:证明两个三角形全等的基本思路:(1 1)已知两边)已知两边- 找第三边找第三边 (SSS)找夹角找夹角(SAS)(2)(2)已知一边一角已知一边一角-已知一边和它的邻角已知一边和它的邻角找是否有直角找是否有直角 (HL)已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这个角的另一个边(SAS)找这边的对角找这边的对角 (AAS)找一角找一角(AAS)已知角是直角,找一边已知角是直角,找一边(HL)(3)(3)已知两角已知两角-找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的
5、任意边(AAS)角的内部到角的两边的距离相等的点角的内部到角的两边的距离相等的点在角的平分线上。在角的平分线上。用法:用法:用法:用法: QDOA,QEOB,QDQE点Q在AOB的平分线上角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等.用法:用法:用法:用法: QDOA,QEOB,点Q在AOB的平分线上 QDQE二二.角的平分线:角的平分线:1.角平分线的性质:角平分线的性质:2.角平分线的判定:角平分线的判定:总结提高总结提高学习全等三角形应注意以下几个问题:学习全等三角形应注意以下几个问题:(1)1)要正确区分要正确区分“对应边对应边”与与“对边对边”,“对应角对
6、应角”与与 “对角对角”的不同含义;的不同含义;(2 2)表示两个三角形全等时,表示对应顶点的字母)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;要写在对应的位置上;(3 3)要记住)要记住“有三个角对应相等有三个角对应相等”或或“有两边及其有两边及其中一边的对角对应相等中一边的对角对应相等”的两个三角形不一定全等;的两个三角形不一定全等;(4 4)时刻注意图形中的隐含条件,如)时刻注意图形中的隐含条件,如 “公共角公共角” 、“公共边公共边”、“对顶角对顶角”练习练习1:如图,:如图,AB=AD,CB=CD. 求证求证: AC 平分平分 BADADCB证明:在证明:在 ABC和
7、和 ADC中中 AC=AC AB=AD CB=CD ABC ADC (SSS) BAC= DAC AC平分平分 BAD2、如图,、如图,D在在AB上,上,E在在AC上,上,AB=AC , B= C, 试问试问AD=AE吗?为什么?吗?为什么?EDCBA解解: AD=AE理由:理由: 在在 ACD和和 ABE中中 B= C AB=AC A= A ACD ABE (ASA) AD=AE3、如图,、如图,OB AB,OC AC,垂足为垂足为B,C,OB=OCAO平分平分 BAC吗?为什么?吗?为什么?OCBA答:答: AO平分平分 BAC理由:理由: OB AB,OC AC B= C=90 在在Rt
8、 ABO和和Rt ACO中中 OB=OC AO=AO Rt ABO Rt ACO (HL) BAO= CAO AO平分平分 BAC 4、如图,、如图,AC和和BD相交于点相交于点O,OA=OC,OB=OD 求证:求证:DC AB证明:在证明:在 ABO和和 CDO中中 OA=OC AOB= COD OB=OD ABO CDO (SAS) A= C DC ABAODBC练习练习5: 如图,小明不慎将一块三角形模具打碎为如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带能配一
9、块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?那块去合适?为什么?BAFEDCBA6、如图,已知、如图,已知AC EF,DE BA,若使若使 ABCEDF,还需要补还需要补充的条件可以是充的条件可以是 或或或或或或AB=EDAC=EFBC=DFDC=BF7:已知:已知 AC=DB, 1= 2. 求证求证: A= D21DCBA证明:在ABC和DCB中 AC=DB 1= 2 BC=CB ABCDCB (SAS) A= D 8、如图,已知,如图,已知,AB DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对请问图中有那几对全等三角形?请任选一对给予证明。给予证明。F
10、EDCBA ABFDEC CBFFEC ABCDEF答:答:9、如图,已知、如图,已知E在在AB上,上, 1= 2, 3= 4,那么,那么AC等于等于AD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在 EBC和和 EBD中中 1= 2 3= 4 EB=EB EBC EBD (AAS) BC=BD 在在 ABC和和 ABD中中 AB=AB 1= 2 BC=BD ABC ABD (SAS) AC=AD10、已知,、已知, ABC和和 ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一条在一条直线上求证:直线上求证:BE=AD EDCAB变式:变式:以上条件不
11、变,将以上条件不变,将 ABC绕点绕点C旋转一定角度(大于零度而小于六十旋转一定角度(大于零度而小于六十度),以上的结论还成立吗?度),以上的结论还成立吗?证明证明: ABC和和 ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA= DCE=60 BCA+ ACE= DCE+ ACE即即 BCE= DCA在在 ACD和和 BCE中中 AC=BC BCE= DCA DC=EC ACDBCE (SAS) BE=AD分析:分析:由于两个三角形完全重合,故面积、周长由于两个三角形完全重合,故面积、周长相等。至于相等。至于D,因为,因为AD和和BC是对应边,因此是对应边,因此ADBC。C
12、符合题意。符合题意。说明:本题的解题关键是要知道中两个全等三角形说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找中,对应顶点定在对应的位置上,易错点是容易找错对应角错对应角。例题精析:例题精析:连接例题例例2如图如图2,AECF,AD BC,ADCB,求证:求证:ADFCBE分析:分析:已知已知ABCA1B1C1,相当于已知,相当于已知它们的对应边相等它们的对应边相等.在证明过程中,可根据需要,在证明过程中,可根据需要,选取其中一部分相等关系选取其中一部分相等关系.例例3已知:如图已知:如图3,ABCA1B1C1,AD、A1D1分别是分别是ABC和和A1
13、B1C1的高的高.求证:求证:AD=A1D1图图3例例4:求证:有一条直角边和斜边上的高:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。对应相等的两个直角三角形全等。分析:分析:首先要分清首先要分清题设题设和和结论结论,然后按要求,然后按要求画出图形画出图形,根据题意写出根据题意写出已知求证已知求证后,再写出证明过程。后,再写出证明过程。说明:说明:文字证明题文字证明题的书写格式要标准的书写格式要标准。如图:将纸片ABC沿DE折叠,点A落在点F处, 已知1+2=100,则A= 度;50例例5、如图、如图6,已知:,已知:A90,AB=BD,ED BC于于D.求证:求证:AEED提示:提示:找两个全等三角形,需连结找两个全等三角形,需连结BE.图图6例6、如图:AB=AC,BD=CD,若B=28则C= ;5、如图、如图5,已知:,已知:AB=CD,AD=CB,O为为AC任一点,过任一点,过O作直线作直线分别交分别交AB、CD的延长线于的延长线于F、E,求,求证:证:E= F.提示:提示:由条件易证由条件易证ABCCDA从而得知从而得知BACDCA,即:,即:AB CD.