走向高考高三数学51第五章平面向量教师讲义手册课件(全国版)文新人教A版

上传人:ni****g 文档编号:584202660 上传时间:2024-08-30 格式:PPT 页数:50 大小:976.02KB
返回 下载 相关 举报
走向高考高三数学51第五章平面向量教师讲义手册课件(全国版)文新人教A版_第1页
第1页 / 共50页
走向高考高三数学51第五章平面向量教师讲义手册课件(全国版)文新人教A版_第2页
第2页 / 共50页
走向高考高三数学51第五章平面向量教师讲义手册课件(全国版)文新人教A版_第3页
第3页 / 共50页
走向高考高三数学51第五章平面向量教师讲义手册课件(全国版)文新人教A版_第4页
第4页 / 共50页
走向高考高三数学51第五章平面向量教师讲义手册课件(全国版)文新人教A版_第5页
第5页 / 共50页
点击查看更多>>
资源描述

《走向高考高三数学51第五章平面向量教师讲义手册课件(全国版)文新人教A版》由会员分享,可在线阅读,更多相关《走向高考高三数学51第五章平面向量教师讲义手册课件(全国版)文新人教A版(50页珍藏版)》请在金锄头文库上搜索。

1、命题预测:分析近年高考试题,平面向量部分突出考查了向量的基本运算,由于大纲要求重在基础,所以预计本章的命题趋势为:1考查向量的基本概念、性质和运算向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加减法、实数与向量的积、向量的数量积等运算,高考中或直接考查或用以解决有关长度、垂直、夹角、判断多边形的形状等此类题一般以选择题形式出现,难度不大2解斜三角形这部分内容的考查,主要是在三角形中考查正、余弦定理与三角恒等变形知识的综合应用,因此,以三角形为背景,以三角恒等变形公式、向量等为工具的小型综合问题仍是热点,应加强正、余弦定理的训练3考查平面向量的综合运用向量的坐标是代数与几

2、何联系的桥梁,它融数、形于一体,具有代数形式和几何形式的双重身份,是中学数学知识的一个重要交汇点,常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅此类题一般以解答题形式出现,综合性比较强,难度也比较大备考指南:1在复习过程中,抓住源于课本,高于课本的指导方针,本章考题很多是课本的变式题,即源于课本因此,掌握双基、精通课本是本章的关键对基本概念要理解到位,不留下盲点;运算要准确,特别是向量互相垂直、平行的充要条件(坐标运算形式)2在解决有关平面向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对向量这一二维(大小和方向)

3、的量的本质认识,并体会用向量处理问题的优越性;二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用3在解决解斜三角形问题时,要注意运用正弦定理、余弦定理来解决问题,要体会向量方法在解斜三角形中的应用;还要体会解斜三角形是重要的测量手段,从而提高解决实际问题的能力4复习中应有意识地把向量与其它内容进行整合如向量与三角函数、函数、解析几何等,特别是平面向量与三角知识的融合交汇问题,在以后的高考中一定会有所体现5本章高考题型既会有基本的选择题和填空题,又会有小型或大型的综合题复习时既要熟练掌握基本题型,又要对有一定难度的

4、大型综合题进行针对性的准备.基础知识一、向量的有关概念1向量:既有 又有 的量叫做向量,向量的大小叫做向量的 (或模)2零向量: 的向量叫做零向量,其方向是 的大小方向长度长度为0任意3单位向量:长度等于 的向量, 是与a同向的单位向量, 是与a反向的单位向量4平行向量:方向 或 的 向量,平行向量又叫 ,任一组平行向量都可以移到同一直线上规定:0与任一向量 5相等向量:长度 且方向 的向量6相反向量:长度 且方向 的向量1个单位长度相同相反非零共线向量平行相等相同相等相反二、向量的表示方法1 表示法:如:a, 等2 表示法:用一条有向线段表示向量3 表示法:在平面直角坐标系中,设向量 的起点

5、O在坐标原点,终点A坐标为(x,y),则(x,y)称为 的坐标,记为 (x,y)字母几何代数三、向量的加法和减法1加法法则: 法则, 法则,加法定义即三角形法则;以a,b为邻边作平行四边形ABCD(取同一起点),即 则 即为a,b的和运算性质:ab (交换律);(ab)c (结合律);a0 a.三角形平行四边形baa(bc)0a加法的几何意义:从法则可以看出,如下图所示2减法法则: ;几何意义:如右图所示三角形法则四、实数与向量的积1定义:实数与向量a的积是一个向量,记作 ,它的长度与方向规定如下:|a| ;当0时,a与a的方向 ;当0时,a与a的方向 ;当0时,a .2运算律:设,R,则:(

6、a) ;()a ;(ab) .a|a|相同相反0()aaaab五、两个向量共线定理:向量b与a(a0)共线的充要条件是有 .六、平面向量基本定理如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的任一向量a,有且只有一对实数1,2,使得 .我们把不共线的向量e1,e2叫做表示这个平面内所有向量的一组 且只有一个实数,使得ba不共线a1e12e2基底一、向量的有关概念应用失误1给出下列命题:若|a|b|,则ab;若|a|b|,则ab;若ab,则ab;若ab,则ab;若ab,则|a|b|,其中,正确命题的序号是_(把你认为正确的命题序号都填上)答案:2给出下列命题:若 则四边形ABCD为平

7、行四边形;在ABCD中,一定有 若mn,np,则mp;若ab,bc,则ac.其中正确命题的序号为_答案:二、向量数乘应用失误4已知,R,则下列各命题:0,a0时,a与a的方向一定相反;0,a0时,a与a的方向一定相同;0,a0时,a与a的方向一定相同;0,a0时,a与a的方向一定相反,则正确命题的序号为_答案:三、平行向量基本定理的应用失误5设两个非零向量e1,e2不共线,且(ke1e2)(e1ke2),则实数k的值为_答案:1或1回归教材1给出下列命题向量 的长度与向量的 长度相等;向量a与向量b平行,则a与b的方向相同或相反;两个有共同起点而且相等的向量,其终点必相同;两个有共同终点向量,

8、一定是共线向量;向量 与向量 是共线向量,则点A、B、C、D必在同一条直线上;有向线段就是向量,向量就是有向线段其中假命题的个数为()A2B3C4D5答案:C2(教材P1195题改编)如图,四边形ABCD中 则相等的向量是()解析: 四边形ABCD是平行四边形答案:D答案:AA2 B3C2 D3答案:A5(教材P1136题改编)化简:答案:(1)0(2)0(3)0(4)0【例1】判断下列命题是否正确,不正确的说明理由(1)若向量a与b同向,且|a|b|,则ab;(2)若向量|a|b|,则a与b的长度相等且方向相同或相反;(3)对于任意向量|a|b|,且a与b的方向相同,则ab;(4)由于0方向

9、不确定,故0不能与任意向量平行;(5)向量 与向量 是共线向量, 则A、B、C、D四点在一条直线上;(6)起点不同,但方向相同且模相等的几个向量是相等向量解析(1)不正确因为向量是不同于数量的一种量,它由两个因素来确定,即大小与方向,所以两个向量不能比较大小,故不正确(2)不正确,由|a|b|只能判断两向量长度相等,不能判断方向(3)正确|a|b|,且a与b同向,由两向量相等的条件可得ab.(4)不正确由零向量性质可得0与任一向量平行,可知不正确(5)不正确若向量 与向量 是共线向量,则向量 与 所在的直线平行或重合,因此,A、B、C、D不一定共线(6)正确对于一个向量只要不改变其大小与方向,

10、是可以任意移动的总结评述对于向量中的零向量、平行向量、相等向量等概念,应有正确认识,才能做出正确解答判断下列各命题的真假(1)若|a|b|,则ab;(2)若A、B、C、D是不共线的四点,则 是四边形ABCD为平行四边形的充要条件;(3)若ab,bc,则ac;(4)两个向量相等的充分必要条件是它们的起点相同,终点相同;(5)|a|b|是ab的必要不充分条件;(6)若ab,bc,则ac(b0)解:(1)不正确,两个向量的长度相等,方向不一定相同(2)正确(3)正确,因为向量相等是模与方向均相同,从而ac.(4)不正确,充要条件是大小相等且方向相同;起点相同,终点相同是两向量相等的充分不必要条件(5

11、)正确,因为|a|b| /ab,但ab|a|b|.(6)正确,根据向量平行的定义可知,命题正确.总结评述本例中应用了向量的加减法运算,注意了M、N将AB和OD所分成的比例,以达到用a、b来表示的目的(2009湖南,4)如图所示,D,E,F分别是ABC的边AB,BC,CA的中点,则()答案:A答案:A【例3】设两个非零向量a与b不共线(2)试确定实数k,使kab和akb共线又它们有公共点B,A、B、D三点共线(2)kab与akb共线,存在实数,使kab(akb),即kabakb,(k)a(k1)b.a、b是不共线的两个非零向量,kk10,k210.k1.反思归纳证明三点A、B、C共线,借助向量,

12、只需要证明由这三点A、B、C所组成的向量中有两个向量共线,即这两个向量之间存在一个实数,使ab(b0)即可 (2009北京,2)已知向量a、b不共线,ckab(kR),dab.如果cd,那么()Ak1且c与d同向 Bk1且c与d反向Ck1且c与d同向 Dk1且c与d反向答案:D解析:cd且a,b不共线,存在唯一实数使cd.kabab,故选D.思路点拨:由于A、C、D三点共线,因此存在实数,使 因而可据已知条件和向量相等条件得到关于、k的方程,从而求出k.方法技巧:向量共线的充要条件中要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想10与实数0有区别,0的模为数0,它不是没有方向,而是方向不定.0可以看成与任意向量平行2由ab,bc不能看到ac.取不共线的向量a与c,显然有a0,c0.3注意向量加法的三角形法则与向量减法的三角形法则的根本区别与联系

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号