《2018年高中数学 第1章 立体几何初步 1.3.1 空间几何体的表面积课件4 苏教版必修2》由会员分享,可在线阅读,更多相关《2018年高中数学 第1章 立体几何初步 1.3.1 空间几何体的表面积课件4 苏教版必修2(15页珍藏版)》请在金锄头文库上搜索。
1、1.3.11.3.1 空间几何体的表面积与体空间几何体的表面积与体积积1. 柱体、锥体、台体的表面积柱体、锥体、台体的表面积正方体、长方体的表面积就是各个面的面积之和。正方体、长方体的表面积就是各个面的面积之和。探究探究 棱柱、棱锥、棱台也是由多个平面图形棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如围成的几何体,它们的展开图是什么?如何计算它们的表面积?何计算它们的表面积?棱柱的侧面展开图棱柱的侧面展开图是由平行四边形组成的平面图是由平行四边形组成的平面图形形,棱锥的侧面展开图棱锥的侧面展开图是由三角形组成的平面图是由三角形组成的平面图形形,棱台的侧面展开图棱台的侧面
2、展开图是由梯形组成的平面图形。是由梯形组成的平面图形。这样,求它们的表面积的问题就可转化为求平行这样,求它们的表面积的问题就可转化为求平行四边形、三角形、梯形的面积问题。四边形、三角形、梯形的面积问题。SBACD圆柱的展开图是一个圆柱的展开图是一个矩形矩形:如果圆柱的底面半径为如果圆柱的底面半径为 ,母线为,母线为 ,那么圆柱,那么圆柱的底面积为的底面积为 ,侧面积为,侧面积为 。因此圆柱的。因此圆柱的表面积为表面积为OO圆锥的展开图是一个圆锥的展开图是一个扇形扇形: 如果圆柱的底面半径为如果圆柱的底面半径为 ,母线为,母线为 ,那么,那么它的表面积为它的表面积为O S圆台的展开图是一个圆台的
3、展开图是一个扇环扇环,它的表面积等于上、,它的表面积等于上、下两个底面和加上侧面的面积,即下两个底面和加上侧面的面积,即OO15cm10cm7.5cm柱体、锥体、台体的体积柱体、锥体、台体的体积正方体、长方体,以及圆柱的体积公式可以统正方体、长方体,以及圆柱的体积公式可以统一为:一为:V = Sh(S为底面面积,为底面面积,h为高)为高)一般棱柱的体积公式也是一般棱柱的体积公式也是V = Sh,其中,其中S为为底面面积,底面面积,h为高。为高。棱锥的体积公式也是棱锥的体积公式也是 ,其中,其中S为底为底面面积,面面积,h为高。为高。即它是同底同高的圆柱的体积的即它是同底同高的圆柱的体积的 。探
4、究探究探究棱锥与同底等高的棱柱体积之间的关系探究棱锥与同底等高的棱柱体积之间的关系?圆台圆台(棱台棱台)的体积公式:的体积公式:其是其是S,S分别为上底面面积,分别为上底面面积,h为圆台(棱台)高。为圆台(棱台)高。练习练习1 . 若一个圆柱的侧面展开图是一个正方形,若一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是则这个圆柱的全面积与侧面积的比是( )A . B . C . D . A2 . 已知圆锥的全面积是底面积的已知圆锥的全面积是底面积的3倍,那么这个倍,那么这个圆锥的侧面积展开图圆锥的侧面积展开图-扇形的圆心角为扇形的圆心角为_度度180小结小结本节课主要介绍了求几何体的表面积的方法:本节课主要介绍了求几何体的表面积的方法: 将空间图形问题转化为平面图形问题,将空间图形问题转化为平面图形问题, 利用平面图形求面积的方法求立体图利用平面图形求面积的方法求立体图 形的表面积形的表面积