第11讲复合材料

上传人:枫** 文档编号:584180560 上传时间:2024-08-30 格式:PPT 页数:28 大小:561.02KB
返回 下载 相关 举报
第11讲复合材料_第1页
第1页 / 共28页
第11讲复合材料_第2页
第2页 / 共28页
第11讲复合材料_第3页
第3页 / 共28页
第11讲复合材料_第4页
第4页 / 共28页
第11讲复合材料_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《第11讲复合材料》由会员分享,可在线阅读,更多相关《第11讲复合材料(28页珍藏版)》请在金锄头文库上搜索。

1、第第1节节 复合材料的发展概述复合材料的发展概述一、基本概念一、基本概念1、定义、定义 复合材料复合材料:是由两种或者多种不同类型、:是由两种或者多种不同类型、不同性质、不同相的材料,运用适当的方不同性质、不同相的材料,运用适当的方法,将其组合成具有整体结构、性能优异法,将其组合成具有整体结构、性能优异的一类新型材料体系。的一类新型材料体系。 或者也可以这样表述或者也可以这样表述:将两种或两种以上:将两种或两种以上的材料在显微尺度内复合,使得各组成相的的材料在显微尺度内复合,使得各组成相的性能互补,而获得的一种性能优异的新材料。性能互补,而获得的一种性能优异的新材料。 木材、骨骼和牙齿等都是自

2、然界中存在的木材、骨骼和牙齿等都是自然界中存在的复合材料。图复合材料。图17-1就是几种常见复合材料的显微组织。就是几种常见复合材料的显微组织。 复合材料可以按照人们的意愿设计成为韧性、强度、重量、高温性能、腐蚀性复合材料可以按照人们的意愿设计成为韧性、强度、重量、高温性能、腐蚀性能、硬度、或者传导性的优异结合体。能、硬度、或者传导性的优异结合体。复合材料设计的重点就是如何使不同的材复合材料设计的重点就是如何使不同的材料能够发挥最佳协调作用料能够发挥最佳协调作用。2、复合材料的分类、复合材料的分类(1)按基体材料分,复合材料可以分为五类按基体材料分,复合材料可以分为五类:n树脂基复合材料树脂基

3、复合材料n碳碳/碳(碳(C/C)复合材料)复合材料n陶瓷基复合材料陶瓷基复合材料n金属基复合材料金属基复合材料n纳米复合材料纳米复合材料(2)按增强材料分,可分为四类按增强材料分,可分为四类:n纤维增强复合材料纤维增强复合材料n颗粒增强复合材料颗粒增强复合材料n混杂增强复合材料混杂增强复合材料n纳米改性复合材料纳米改性复合材料(3)按增强材料形态分,可分为四类按增强材料形态分,可分为四类:n连续纤维增强复合材料连续纤维增强复合材料n短切纤维(晶须)增强复合材料短切纤维(晶须)增强复合材料n颗粒或填料填充复合材料颗粒或填料填充复合材料n纳米改性复合材料纳米改性复合材料(4)按用途分类,可分为两类

4、按用途分类,可分为两类:n功能复合材料功能复合材料n结构复合材料结构复合材料 一般较为常用的分类方法是采用按基体分类方法。基体材料在复合材一般较为常用的分类方法是采用按基体分类方法。基体材料在复合材料显微结构中被称为料显微结构中被称为连续相连续相,增强材料被称为,增强材料被称为分散相分散相。 n结构复合材料的主要优势之一结构复合材料的主要优势之一在于其优异的高温力学性能,随基体材料的不在于其优异的高温力学性能,随基体材料的不同,复合材料使用温度范围如图同,复合材料使用温度范围如图8-2所示。所示。n目前,目前,树脂基复合材料树脂基复合材料已从研究阶段已从研究阶段步入应用阶段,其成型工艺手段较多

5、,步入应用阶段,其成型工艺手段较多,应用范围最广,用量最大。应用范围最广,用量最大。C/C复合材料复合材料则已在航空、航天和热防护中取得了较则已在航空、航天和热防护中取得了较为广泛的应用,其制造工艺也日趋成熟,为广泛的应用,其制造工艺也日趋成熟,属于发展前景十分光明的高级复合材属于发展前景十分光明的高级复合材料。料。纳米复合材料纳米复合材料则是近期发展起来的则是近期发展起来的高新材料,纳米复合材料仍处于研究阶段。高新材料,纳米复合材料仍处于研究阶段。 0-3类复合材料(纳米粉体改性传统材料)已从实验室进入初步应用阶段,某些类复合材料(纳米粉体改性传统材料)已从实验室进入初步应用阶段,某些品类已

6、批量生产。品类已批量生产。陶瓷基复合材料陶瓷基复合材料经过添加增强材料有效地解决了陶瓷脆性大经过添加增强材料有效地解决了陶瓷脆性大的弱点,尽管处于研发阶段,但目前已解决了一些关键技术和问题,正处于工的弱点,尽管处于研发阶段,但目前已解决了一些关键技术和问题,正处于工程化应用的前期。程化应用的前期。金属基复合材料金属基复合材料目前仍处于研发阶段,其制造工艺如气相法、目前仍处于研发阶段,其制造工艺如气相法、液相法和固相法与金属材料制造工艺大致相同。液相法和固相法与金属材料制造工艺大致相同。3、复合材料的基本原理、复合材料的基本原理 对于给定的使用条件,每一种材料都有各自的优点和缺点。在形成复合材料

7、时,这些对于给定的使用条件,每一种材料都有各自的优点和缺点。在形成复合材料时,这些优缺点被重新组合。如图优缺点被重新组合。如图8-1所示,材料所示,材料A和材料和材料B单独使用时,各自的优缺点同时存在,材单独使用时,各自的优缺点同时存在,材料的性能分别为状态料的性能分别为状态II 和和VI。但将两种材料组合获得的复合材料其性能可是他们各自优点。但将两种材料组合获得的复合材料其性能可是他们各自优点的组合的组合(状态状态I),或各自缺点的组合,或各自缺点的组合(状态状态V),或他们优缺点的交叉组合,或他们优缺点的交叉组合(状态状态III及状态及状态IV)。实际上复合材料的性能并不仅仅取决于其组成相

8、的性能,还与他们的界面特性密切相关。实际上复合材料的性能并不仅仅取决于其组成相的性能,还与他们的界面特性密切相关。因此,因此,复合材料的性能并不是组成相性能的简单叠加复合材料的性能并不是组成相性能的简单叠加。n通常结构复合材料的部分综合性能通常结构复合材料的部分综合性能(密度、弹性模量、强度等密度、弹性模量、强度等)近似表现为为两种组成相近似表现为为两种组成相的性能的平均的性能的平均,即,即 (8-1) 式中式中 K、K1、K2 分别为复合材料及组成相分别为复合材料及组成相1和和2的性能;的性能; 1、 2 分别为复合材料中组成分别为复合材料中组成相相1和和2 的体积分数。的体积分数。n功能复

9、合材料的性能则往往表现为乘积效应功能复合材料的性能则往往表现为乘积效应,如书中表如书中表8-1所示。所示。n需要注意的是,式需要注意的是,式8-1在外加应力过大的情况下,此时由于复合材料在外加应力过大的情况下,此时由于复合材料的基体会开始变形,所以复合材料的应力的基体会开始变形,所以复合材料的应力-应变关系不再呈线性变化。应变关系不再呈线性变化。图图17-8就展示了这种变化关系。就展示了这种变化关系。4、复合材料制造技术、复合材料制造技术 复合材料制造技术复合材料制造技术是将是将上述两种或者多种不同类上述两种或者多种不同类型、不同性质、不同相的型、不同性质、不同相的材料合成为一性能优异的材料合

10、成为一性能优异的整体结构的整体结构的“适当方法或适当方法或者技术者技术”。(1)根据增强方式不同,)根据增强方式不同,其成形方法也有所区别。其成形方法也有所区别。常见成形方法包括常见成形方法包括长纤维及编织体增强长纤维及编织体增强:n液态合金浸渗法液态合金浸渗法(加压加压及不加压及不加压)n机械复合热压成形法机械复合热压成形法颗粒及短纤维增强颗粒及短纤维增强: n粉末冶金法粉末冶金法n液态混合铸造法液态混合铸造法n半固态铸造法半固态铸造法n液态合金浸渗法共喷射沉积法液态合金浸渗法共喷射沉积法n自生复合材料方法自生复合材料方法(2)按照复合过程)按照复合过程基体材料基体材料的状态的状态分,成形技

11、术可分为:分,成形技术可分为:n固相法固相法n液相法液相法n固固-液相法液相法二、复合材料的发展状况二、复合材料的发展状况 自自20世纪世纪40年代,第二次世界大战期间,美国用碎布增强酚醛模树脂压制成年代,第二次世界大战期间,美国用碎布增强酚醛模树脂压制成型出大口径弹带、步枪枪托和护木以来,揭开了复合材料制造技术发展的帷幕。型出大口径弹带、步枪枪托和护木以来,揭开了复合材料制造技术发展的帷幕。历经历经60多年多年 ,在发展速度和规模、应用范围和产量,对现代技术与生产进步的,在发展速度和规模、应用范围和产量,对现代技术与生产进步的推动与影响,以及本身的科学研究与深度和广度等诸多方面,复合材料尤其

12、是推动与影响,以及本身的科学研究与深度和广度等诸多方面,复合材料尤其是先进复合材料领域中所取得的成就和技术进步,已超过人类历史上曾出现和使先进复合材料领域中所取得的成就和技术进步,已超过人类历史上曾出现和使用过的任何材料。复合材料已成为当代军事技术、航空航天技术、空间技术、用过的任何材料。复合材料已成为当代军事技术、航空航天技术、空间技术、武器装备技术、信息技术、能源工程、海洋工程、生物工程,乃至民用工业不武器装备技术、信息技术、能源工程、海洋工程、生物工程,乃至民用工业不可缺少的材料之一。可缺少的材料之一。 经过几代人不懈努力,经过几代人不懈努力,复合材料目前已形成四类复合材料共存,而树脂基

13、复复合材料目前已形成四类复合材料共存,而树脂基复合材料则形成五代复合材料共用的良好局面合材料则形成五代复合材料共用的良好局面。1、树脂基复合材料、树脂基复合材料n第一代树脂基复合材料是以玻璃纤维增强复合材料为代表第一代树脂基复合材料是以玻璃纤维增强复合材料为代表,在,在20世纪世纪5060年代以年代以“玻璃钢玻璃钢”名称著称,广泛应用于军事、航空航天、兵器、船舶等诸多名称著称,广泛应用于军事、航空航天、兵器、船舶等诸多行业。逐步形成的行业。逐步形成的玻璃钢制造技术玻璃钢制造技术是树脂基复合材料的重大技术进步和历史性是树脂基复合材料的重大技术进步和历史性变革,产品由原先在附件上使用而逐步发展为作

14、为受力结构件使用。特别是变革,产品由原先在附件上使用而逐步发展为作为受力结构件使用。特别是S玻玻璃纤维增强材料的出现,其性能比璃纤维增强材料的出现,其性能比E玻璃纤维增强材料提高了很多,如美国的玻璃纤维增强材料提高了很多,如美国的S玻璃纤维增强材料拉伸强度高达玻璃纤维增强材料拉伸强度高达4650MPa,这种高强度高模量低价格材料在军,这种高强度高模量低价格材料在军事装备、工业设备和车辆中得到大量应用,是目前用量最大、技术最为成熟的事装备、工业设备和车辆中得到大量应用,是目前用量最大、技术最为成熟的低成本复合材料之一。低成本复合材料之一。n第二代树脂基复合材料以碳纤维增强复合材料为代表第二代树脂

15、基复合材料以碳纤维增强复合材料为代表。它具有卓越的比强度。它具有卓越的比强度(12.8MPa/(g/cm3))、比模量()、比模量(12.8GPa/(g/cm3)),在),在300以上能够长期以上能够长期使用,低温脆化点达使用,低温脆化点达-196,获得各国军方和工业部门的高度重视,在工业领,获得各国军方和工业部门的高度重视,在工业领域、航空航天、地面武器装备中被广泛使用。域、航空航天、地面武器装备中被广泛使用。n第三代树脂基复合材料是有机纤维复合材料,以美国杜邦公司的第三代树脂基复合材料是有机纤维复合材料,以美国杜邦公司的Kelvar(纺(纺纶)纤维复合材料为代表纶)纤维复合材料为代表。这种

16、热熔性液晶聚合物纤维比强度好,弹性模量是。这种热熔性液晶聚合物纤维比强度好,弹性模量是玻纤的玻纤的2倍,价格只有碳纤维的倍,价格只有碳纤维的1/3。其突出的韧性和回弹性是其它纤维所不具。其突出的韧性和回弹性是其它纤维所不具备的,因此,面世不久就被各国工业部门和军方采用。备的,因此,面世不久就被各国工业部门和军方采用。n第四代树脂基复合材料是第四代树脂基复合材料是20世纪世纪80年代末美国年代末美国Allied公司商品化的一种公司商品化的一种Spectra-900和和Spectra-1000为代表的超高强度、超高模量的高拉伸聚乙烯纤为代表的超高强度、超高模量的高拉伸聚乙烯纤维维。不久之后,荷兰。

17、不久之后,荷兰DSM研究所和日本东洋纺织公司联合开发了研究所和日本东洋纺织公司联合开发了Dyneema高拉高拉伸聚乙烯纤维,并用其制造出了环氧基复合材料,其拉伸强度高达伸聚乙烯纤维,并用其制造出了环氧基复合材料,其拉伸强度高达3.5GPa,模量模量达达125GPa,比强度比钢大,比强度比钢大10倍,比碳纤维大倍,比碳纤维大4倍,比芳纤大倍,比芳纤大50%,20世纪世纪90年年代时被称为世界上强度最大的纤维代时被称为世界上强度最大的纤维,而且其密度最小(,而且其密度最小(0.92kg/m3)。它具有透)。它具有透射雷达波、介电性极佳、结构强度高的优点,高纤维是当时抗弹性最好的弹道射雷达波、介电性

18、极佳、结构强度高的优点,高纤维是当时抗弹性最好的弹道材料,在兵器上获得广泛应用,尤其是装甲防护领域。材料,在兵器上获得广泛应用,尤其是装甲防护领域。n第五代为第五代为PBO纤维增强复合材料纤维增强复合材料,是美国道化学公司和日本东洋纺织公司合作,是美国道化学公司和日本东洋纺织公司合作研制成功的聚苯并双呃唑纤维及其复合材料,被称为研制成功的聚苯并双呃唑纤维及其复合材料,被称为21世纪超级纤维复合材料世纪超级纤维复合材料。该纤维无熔点,高温下不熔融,与火焰接触后不收缩,移去火焰后基本无残焰该纤维无熔点,高温下不熔融,与火焰接触后不收缩,移去火焰后基本无残焰,布料质地柔软。拉伸强度为布料质地柔软。拉

19、伸强度为5.8 GPa,拉伸模量为,拉伸模量为280GPa,延伸率为,延伸率为3.5%。是目。是目前唯一将力学性能、前唯一将力学性能、卓越的耐高温性能卓越的耐高温性能和优良的加工性能结合在一起的有机纤维。和优良的加工性能结合在一起的有机纤维。目前尚处实验室状态。目前尚处实验室状态。 纵观纵观树脂基复合材料的发展历程树脂基复合材料的发展历程,其间发生了四次重要的技术进步其间发生了四次重要的技术进步:第一次技术进步是第一次技术进步是1926年发明的年发明的传递传递模塑工艺模塑工艺,第二次是,第二次是1945年研制的年研制的高高频预热技术频预热技术,第三次是,第三次是1963年研制成年研制成功的功的

20、注射成型技术注射成型技术,第四次是,第四次是20世纪世纪80年代研制成功的年代研制成功的液体膜塑成型技术液体膜塑成型技术。2、C/C复合材料复合材料 20世纪世纪50年代以来,碳纤维技术的出现,年代以来,碳纤维技术的出现,为将石墨材料发展为真正实用的结构材料提为将石墨材料发展为真正实用的结构材料提供了条件。供了条件。20世纪世纪60年代,在美国空军材料年代,在美国空军材料实验室(实验室(AFML)支持下,一种新的碳)支持下,一种新的碳/碳复碳复合材料试制成功,并具有优异的比强度和比合材料试制成功,并具有优异的比强度和比弹性模量。今天,弹性模量。今天,C-C复合材料已广泛应用于军事和民用工业的各

21、个领域。复合材料已广泛应用于军事和民用工业的各个领域。 C-C复合材料用于航空航天条件下极其苛刻的高温环境下,其使用温度可达复合材料用于航空航天条件下极其苛刻的高温环境下,其使用温度可达3000 ,而且其高温强度一般要高于其室温强度,如图,而且其高温强度一般要高于其室温强度,如图17-28所示。所示。 C-C复合材料的合成,首先是把聚丙烯腈或者复合材料的合成,首先是把聚丙烯腈或者C纤维编织体放入模型,并用有机纤维编织体放入模型,并用有机树脂如酚醛浸渗,然后将酚醛热解为碳。此时树脂如酚醛浸渗,然后将酚醛热解为碳。此时C-C复合材料尚是多孔的软质材料,复合材料尚是多孔的软质材料,需要经过多次的浸渗

22、和热解过程后,需要经过多次的浸渗和热解过程后, C-C复合材料的密度、强度和韧性才会逐步增复合材料的密度、强度和韧性才会逐步增加到需要性能。最后在加到需要性能。最后在C-C材料表面涂敷一层材料表面涂敷一层SiC涂料,以防止氧化。涂料,以防止氧化。 C-C复合材料一般用于如宇宙飞船的头锥部件和进气口,以及高端赛车和喷气式复合材料一般用于如宇宙飞船的头锥部件和进气口,以及高端赛车和喷气式飞机的刹车盘等。飞机的刹车盘等。 C/C复合材料的真正实用化得益于多向编织技术的出现和发展复合材料的真正实用化得益于多向编织技术的出现和发展。20世纪世纪60年代末期出年代末期出现了用于树脂基和碳基复合材料的编织技

23、术,并成功地完成了圆轮、空心圆柱、平椎体结现了用于树脂基和碳基复合材料的编织技术,并成功地完成了圆轮、空心圆柱、平椎体结构的编织。此后,通过正确选取和设计增强织物以满足复杂结构的需要成为可能。今天,构的编织。此后,通过正确选取和设计增强织物以满足复杂结构的需要成为可能。今天,C/C复合材料增强体可以有二向、三向、五向、七向、十一向等多种形式。特别是进入复合材料增强体可以有二向、三向、五向、七向、十一向等多种形式。特别是进入80年代,多维整体编织技术的出现,使得极大地发挥年代,多维整体编织技术的出现,使得极大地发挥C/C复合材料的潜力成为可能。复合材料的潜力成为可能。 C/C复合材料具有优异的综

24、合性能,迄今为止,是用于宇航工业、热结构和固体发动复合材料具有优异的综合性能,迄今为止,是用于宇航工业、热结构和固体发动机喷管最理想的烧蚀结构材料,但长的加工周期、高的制造成本在一定程度上限制了其机喷管最理想的烧蚀结构材料,但长的加工周期、高的制造成本在一定程度上限制了其使用。目前,使用。目前,C/C复合材料的改型主要围绕着提高性能和降低成本两方面展开复合材料的改型主要围绕着提高性能和降低成本两方面展开: 在提高性能方面,近年来提出的一项重要途径就是应用难熔碳化物涂层提高在提高性能方面,近年来提出的一项重要途径就是应用难熔碳化物涂层提高C/C复合复合材料的抗氧化能力,降低烧蚀率,承受更高的燃气

25、温度或者更长的工作时间。所用难熔碳材料的抗氧化能力,降低烧蚀率,承受更高的燃气温度或者更长的工作时间。所用难熔碳化物有碳化硅、碳化铪(化物有碳化硅、碳化铪(HfC)、碳化钽()、碳化钽(TaC)、碳化铌()、碳化铌(NbC)、碳化锆()、碳化锆(ZrC)等。涂覆工艺多用化学气相沉积和化学气相反应。降低成本方面,除编织技术的改进外,等。涂覆工艺多用化学气相沉积和化学气相反应。降低成本方面,除编织技术的改进外,还着重于致密工艺的改进。还着重于致密工艺的改进。 C/C复合材料制造技术目前主要有气体热解技术、树脂先躯体热解技术和沥青先躯体热复合材料制造技术目前主要有气体热解技术、树脂先躯体热解技术和沥

26、青先躯体热解技术等解技术等。3、陶瓷基复合材料、陶瓷基复合材料 陶瓷基复合材料目前尚处于研究阶段,还未进入批量生产和实际应用。某些品类虽然已陶瓷基复合材料目前尚处于研究阶段,还未进入批量生产和实际应用。某些品类虽然已有制品,但据实际应用还有一段距离。有制品,但据实际应用还有一段距离。 陶瓷基复合材料具有优异的高温强度陶瓷基复合材料具有优异的高温强度。目前是制作摩擦结构材料、固体发动机喷管和燃。目前是制作摩擦结构材料、固体发动机喷管和燃烧室壳体之间的热结构连接件的理想材料,还可以用作出口锥和延伸锥的一些部件。陶瓷烧室壳体之间的热结构连接件的理想材料,还可以用作出口锥和延伸锥的一些部件。陶瓷基复合

27、材料作为固体发动机的热结构连接件,已进行过发动机地面热试车。基复合材料作为固体发动机的热结构连接件,已进行过发动机地面热试车。 不是所有的陶瓷都能作为基体材料的,目前使用较多的是碳化物、氧化物、硼化物和氮不是所有的陶瓷都能作为基体材料的,目前使用较多的是碳化物、氧化物、硼化物和氮化物等化物等,如,如SiC、Si3N4、Al2O3、ZrO2。其中,以氮化硅系高温热结构陶瓷复合材料(如。其中,以氮化硅系高温热结构陶瓷复合材料(如Si3N4、SiC/Si3N4、ZrO2/Si3N4、Si3N4+Al2O3等)引人注目。这类材料的综合性能较为突等)引人注目。这类材料的综合性能较为突出,具有耐高温耐腐蚀

28、、抗热震、韧性好、热膨胀系数小、密度较低等特点,非常适用于出,具有耐高温耐腐蚀、抗热震、韧性好、热膨胀系数小、密度较低等特点,非常适用于制作高温承力部件。制作高温承力部件。目前世界各国已把氮化硅系陶瓷材料作为热结构的首选陶瓷材料进行目前世界各国已把氮化硅系陶瓷材料作为热结构的首选陶瓷材料进行广泛、重点地研究与开发广泛、重点地研究与开发。Si3N4系陶瓷材料在军用和民用领域均有十分广阔的应用前景。系陶瓷材料在军用和民用领域均有十分广阔的应用前景。 陶瓷基复合材料成型的技术关键是在成型过程中纤维不受机械的和化学的损伤,并能均陶瓷基复合材料成型的技术关键是在成型过程中纤维不受机械的和化学的损伤,并能

29、均匀地分散在基体中。匀地分散在基体中。目前使用的成型方法有热压烧结法和反应烧结法目前使用的成型方法有热压烧结法和反应烧结法。 陶瓷纤维陶瓷纤维-陶瓷基体复合材料与传统陶瓷相比,强度和断裂韧性大幅陶瓷基体复合材料与传统陶瓷相比,强度和断裂韧性大幅改进。改进。纤维增强体通过几种途径来改善陶瓷基体的韧性纤维增强体通过几种途径来改善陶瓷基体的韧性。首先,基体中。首先,基体中出现的裂纹扩展会被纤维阻滞;如果纤维和基体间结合不牢靠,裂纹会出现的裂纹扩展会被纤维阻滞;如果纤维和基体间结合不牢靠,裂纹会被迫在纤维周围传播以继续断裂过程。另外,结合不良还会使纤维从基被迫在纤维周围传播以继续断裂过程。另外,结合不

30、良还会使纤维从基体中拔出。而这两个过程都需要消耗能量,由此增加了复合材料的韧体中拔出。而这两个过程都需要消耗能量,由此增加了复合材料的韧性。最后,如果基体中出现一个裂纹,而未断的纤维就可能桥结裂纹,性。最后,如果基体中出现一个裂纹,而未断的纤维就可能桥结裂纹,并产生压应力以防止裂纹进一步发展。并产生压应力以防止裂纹进一步发展。 不像高聚物或者金属基复合材料,不像高聚物或者金属基复合材料,陶瓷基复合材料需要陶瓷纤维和陶瓷基复合材料需要陶瓷纤维和基体陶瓷间的不牢靠结合基体陶瓷间的不牢靠结合。因此,。因此,陶瓷基复合材料的界面结构控制非常陶瓷基复合材料的界面结构控制非常关键关键。如在。如在SiC纤维

31、增强的玻璃陶瓷复合材料中,包含纤维增强的玻璃陶瓷复合材料中,包含C和和NbC的界面层的界面层设计时,就要使纤维能够从基体中容易拔出。设计时,就要使纤维能够从基体中容易拔出。4、金属基复合材料、金属基复合材料 金属基复合材料起步于金属基复合材料起步于20世纪世纪50年代末期,或者年代末期,或者60年代初期。初期最具代表性的是硼年代初期。初期最具代表性的是硼纤维增强铝制造的哥伦比亚号飞机结构件,包括主骨架、肋条、桁架支柱、制动器支撑架纤维增强铝制造的哥伦比亚号飞机结构件,包括主骨架、肋条、桁架支柱、制动器支撑架等。但这种材料造价太高,即使在航天飞行器这种尖端结构上应用,也承受不了其高昂的等。但这种

32、材料造价太高,即使在航天飞行器这种尖端结构上应用,也承受不了其高昂的价格。所以自价格。所以自20世纪世纪70年代末期,年代末期,金属基复合材料的研究开发者们用石墨纤维和碳化硅等金属基复合材料的研究开发者们用石墨纤维和碳化硅等作为增强材料,并为解决纤维和金属基体复合时界面间的反应做了大量的工作作为增强材料,并为解决纤维和金属基体复合时界面间的反应做了大量的工作。 进入进入80年代,由于新型高性能增强纤维的出现,如化学气相沉积法年代,由于新型高性能增强纤维的出现,如化学气相沉积法SiC纤维、纺丝纤维、纺丝SiC纤维和表面带有纤维和表面带有TiB、TiC、SiC等涂层的系列石墨纤维,并发展了可以将铝

33、、钛、镍、金等涂层的系列石墨纤维,并发展了可以将铝、钛、镍、金属间化合物等性能较高的金属作为基体的成型工艺,推动了金属基复合材料的发展。属间化合物等性能较高的金属作为基体的成型工艺,推动了金属基复合材料的发展。 由于金属基复合材料起步较晚,目前技术水平大部分还处于实验室阶段,只有一小部分由于金属基复合材料起步较晚,目前技术水平大部分还处于实验室阶段,只有一小部分实现了工业化。实现了工业化。金属基复合材料成型工艺的特点是先做成预制件再复合成型金属基复合材料成型工艺的特点是先做成预制件再复合成型。 金属基复合材料金属基复合材料成型工艺有液相熔铸法、半固态热模压法和固态扩散法成型工艺有液相熔铸法、半

34、固态热模压法和固态扩散法。5、纳米复合材料、纳米复合材料 纳米材料是当前材料科学研究的热点之一。广义地说,纳米材料是当前材料科学研究的热点之一。广义地说,多相的复合材料,多相的复合材料,只要其中某一组成相至少有一维的尺寸处在纳米尺度范围(只要其中某一组成相至少有一维的尺寸处在纳米尺度范围(1100nm)内,即)内,即可视作纳米复合材料可视作纳米复合材料。 用纳米材料与其它基体材料如树脂、橡胶、陶瓷和金属制成纳米复合材料的用纳米材料与其它基体材料如树脂、橡胶、陶瓷和金属制成纳米复合材料的概念,是在概念,是在1988年以后逐渐被人们接受的。总体来说,目前年以后逐渐被人们接受的。总体来说,目前纳米材

35、料可分为三纳米材料可分为三类类:a) 0-0复合型复合型,即不同成分、不同相或者不同种类的,即不同成分、不同相或者不同种类的纳米粒子纳米粒子复合而成的纳复合而成的纳米固体材料,这种材料通常采用原位压块相转变等方法实现,结构具有纳米非米固体材料,这种材料通常采用原位压块相转变等方法实现,结构具有纳米非均匀性,均匀性,也称为聚集型也称为聚集型; b) 0-3复合型复合型,即纳米粒子分散在,即纳米粒子分散在常规三维固体常规三维固体中,形成纳米粒子均匀分散中,形成纳米粒子均匀分散的纳米复合材料;的纳米复合材料; c) 0-2复合型复合型,即把纳米粒子分散在,即把纳米粒子分散在二维的薄膜材料二维的薄膜材

36、料中,故而被称为中,故而被称为纳米复纳米复合薄膜材料合薄膜材料。有时也把不同材质构成的多层膜如超晶格也称为纳米复合薄膜材。有时也把不同材质构成的多层膜如超晶格也称为纳米复合薄膜材料。纳米塑料则属于第二类纳米复合材料之列。料。纳米塑料则属于第二类纳米复合材料之列。 这三种纳米复合材料代表了纳米材料技术的三个发展阶段这三种纳米复合材料代表了纳米材料技术的三个发展阶段。n第一阶段第一阶段(20世纪世纪90年代以前)主要是在实验室探索用各种手段制年代以前)主要是在实验室探索用各种手段制备各类材料的纳米颗粒粉体、合成块体(包括薄膜),研究评估表征的备各类材料的纳米颗粒粉体、合成块体(包括薄膜),研究评估

37、表征的方法,探索纳米材料不同于常规材料的特殊性能,方法,探索纳米材料不同于常规材料的特殊性能,研究的对象一般局限研究的对象一般局限于单一材料和单相材料(又称为纳米晶和纳米相材料于单一材料和单相材料(又称为纳米晶和纳米相材料)n第二阶段第二阶段(1994年以前)研究的重点是年以前)研究的重点是如何利用纳米材料已发掘出如何利用纳米材料已发掘出的奇特物理、化学和力学性能,设计纳米复合材料如纳米塑料的奇特物理、化学和力学性能,设计纳米复合材料如纳米塑料,通常将,通常将纳米粒子与纳米粒子的复合称为纳米粒子与纳米粒子的复合称为0-0复合材料,纳米粒子与常规块状复合复合材料,纳米粒子与常规块状复合材料复合称

38、为材料复合称为0-3复合材料,用纳米材料制备的薄膜称为复合材料,用纳米材料制备的薄膜称为0-2复合材料。复合材料。n第三阶段第三阶段(从(从1994年至今)研究的重点是年至今)研究的重点是纳米组装体系、人工组装合成纳米结纳米组装体系、人工组装合成纳米结构材料(又称为纳米尺度材料构材料(又称为纳米尺度材料)。这种纳米材料内涵是以纳米颗粒及其所组成的)。这种纳米材料内涵是以纳米颗粒及其所组成的纳米带和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体纳米带和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,其中包括纳米陈列体系、介孔组装体系和薄膜镶嵌体系。系,其中包括纳米陈

39、列体系、介孔组装体系和薄膜镶嵌体系。 目前目前树脂基纳米复合材料制备技术较为成熟树脂基纳米复合材料制备技术较为成熟,已生产出不少纳米材料制品。树,已生产出不少纳米材料制品。树脂基纳米复合材料制备技术主要有:共混法、原位生成法、插层复合技术、辐射脂基纳米复合材料制备技术主要有:共混法、原位生成法、插层复合技术、辐射合成法和溶胶合成法和溶胶-凝胶法。凝胶法。 纳米陶瓷的制造技术纳米陶瓷的制造技术主要包括纳米粉体的制备、成型和烧结。其制备方法目前主要包括纳米粉体的制备、成型和烧结。其制备方法目前主要有气相合成法、凝聚相合成法和水热法。主要有气相合成法、凝聚相合成法和水热法。 而而纳米金属的制造技术纳

40、米金属的制造技术主要有机械合金研磨结合加压成块法、非晶化法、高压主要有机械合金研磨结合加压成块法、非晶化法、高压高温固相淬火法、大塑性变形法和深过冷直接晶化法。高温固相淬火法、大塑性变形法和深过冷直接晶化法。三、金属基复合材料制造方法简介三、金属基复合材料制造方法简介 金属基复合材料是以金属为基体,以纤维材料和颗粒或者晶须为增强材料,使其均匀地金属基复合材料是以金属为基体,以纤维材料和颗粒或者晶须为增强材料,使其均匀地分散于基体材料,形成的两相或者多相组合的材料体系。而用于制造这种复合材料的适当分散于基体材料,形成的两相或者多相组合的材料体系。而用于制造这种复合材料的适当方法称之为方法称之为金

41、属基复合材料制备技术金属基复合材料制备技术。1、金属基复合材料的制造方法、金属基复合材料的制造方法 大致分为三种大致分为三种:n固态制造技术固态制造技术:是在金属基体处于固态情况下,制成复合材料体系的方法,包括粉末:是在金属基体处于固态情况下,制成复合材料体系的方法,包括粉末冶金法、热压法、热等静压法、轧制法、挤压和拉拔法、爆炸焊接法等。冶金法、热压法、热等静压法、轧制法、挤压和拉拔法、爆炸焊接法等。n液体制造技术液体制造技术:是基体金属处于熔融状态下,与增强材料混合组成新的复合材料的方:是基体金属处于熔融状态下,与增强材料混合组成新的复合材料的方法。包括真空压力浸渗法、挤压铸造法、搅拌铸造法

42、、液态金属浸渍法、热喷涂法等。法。包括真空压力浸渗法、挤压铸造法、搅拌铸造法、液态金属浸渍法、热喷涂法等。n新型制造技术新型制造技术:包括原位自生成法、物理气相沉积法、化学气相沉积法、化学镀和电:包括原位自生成法、物理气相沉积法、化学气相沉积法、化学镀和电镀法及复合镀法。镀法及复合镀法。2、金属基复合材料制造技术应具备的条件、金属基复合材料制造技术应具备的条件n能够使增强材料均匀地分布于金属基体中能够使增强材料均匀地分布于金属基体中n能够确保复合材料界面效应、混杂效应或者复合效应充分发挥能够确保复合材料界面效应、混杂效应或者复合效应充分发挥n能够充分发挥增强材料对基体金属的增强增韧效果,可制得

43、具有合适界面结构能够充分发挥增强材料对基体金属的增强增韧效果,可制得具有合适界面结构和特性的复合材料和特性的复合材料n工艺简单可行,可操作性强、成本适当,并尽量符合工艺简单可行,可操作性强、成本适当,并尽量符合“近、净、型近、净、型”成型理念成型理念3、金属基复合材料制造的关键技术、金属基复合材料制造的关键技术 (1)制备温度高,在高温下易发生不利的化学反应。在制备过程中,为了确保基体的浸)制备温度高,在高温下易发生不利的化学反应。在制备过程中,为了确保基体的浸润性和流动性,需要采用接近或者高于基体合金熔点的制造温度。此时,基体与增强材料润性和流动性,需要采用接近或者高于基体合金熔点的制造温度

44、。此时,基体与增强材料易发生界面反应,而这些反应往往会对增强材料造成损害。因此,易发生界面反应,而这些反应往往会对增强材料造成损害。因此,控制制备温度是一项关控制制备温度是一项关键技术键技术。 (2)增强材料与基体润湿性太差也是金属基复合材料需要解决的另一项关键技术增强材料与基体润湿性太差也是金属基复合材料需要解决的另一项关键技术。绝大。绝大多数的金属基复合材料如多数的金属基复合材料如C/Al、C/Mg、SiC/Al、Al2O3/Cu等,基体对增强材料润湿性太等,基体对增强材料润湿性太差,有时就根本不润湿。差,有时就根本不润湿。 (3)按结构设计要求,使增强材料按所需的方向均匀地分布于基体中也

45、是一项需要掌握按结构设计要求,使增强材料按所需的方向均匀地分布于基体中也是一项需要掌握的关键技术的关键技术。 4、长纤维增强金属基复合材料液相制备、长纤维增强金属基复合材料液相制备 长纤维增强金属基复合材料长纤维增强金属基复合材料是将金属与按照一定取向排列的超细纤维复合获得具有是将金属与按照一定取向排列的超细纤维复合获得具有优秀单向力学特性的复合材料。优秀单向力学特性的复合材料。 长纤维增强复合材料的液相成形方法主要是长纤维增强复合材料的液相成形方法主要是浸渗法浸渗法,即把熔化的液态合金以加压或,即把熔化的液态合金以加压或不加压的方式浸入到纤维预制体中,凝固后获得具有预期的组织和性能的复合材料

46、。不加压的方式浸入到纤维预制体中,凝固后获得具有预期的组织和性能的复合材料。 5、 颗粒增强金属基复合材料的制备技术简介颗粒增强金属基复合材料的制备技术简介 在层出不穷的复合材料中,颗粒增强金属基复合材料不失为一种成本低廉、制备简单,在层出不穷的复合材料中,颗粒增强金属基复合材料不失为一种成本低廉、制备简单,材料各向异性,并具有良好的热压加工型、耐高温性、耐磨性及尺寸稳定性的实用型结构材料各向异性,并具有良好的热压加工型、耐高温性、耐磨性及尺寸稳定性的实用型结构材料。其中,尤以碳化硅颗粒增强铝基复合材料为先导开发的排头兵。材料。其中,尤以碳化硅颗粒增强铝基复合材料为先导开发的排头兵。 将氧化物

47、、碳化物等颗粒与铝合金,镁合金,钛合金复合可以获得具有良好的耐磨性及高将氧化物、碳化物等颗粒与铝合金,镁合金,钛合金复合可以获得具有良好的耐磨性及高温稳定性的金属基复合材料。温稳定性的金属基复合材料。 颗粒增强金属基复合材料的基体与增强颗粒选择需要考虑的主要因素是颗粒增强金属基复合材料的基体与增强颗粒选择需要考虑的主要因素是:n使用性能使用性能:作为结构材料,获得满足特定的使用性能是复合材料设计需要考虑的首要因:作为结构材料,获得满足特定的使用性能是复合材料设计需要考虑的首要因素。这些性能包括高强度、高弹性模量、低密度及高的耐磨性等。素。这些性能包括高强度、高弹性模量、低密度及高的耐磨性等。n

48、工艺特性工艺特性:颗粒增强复合材料制备工艺可分为粉末冶金法和液相法。前者通过雾化将合:颗粒增强复合材料制备工艺可分为粉末冶金法和液相法。前者通过雾化将合金制成粉末,然后进行混合及热压成形。在粉末冶金法制备过程中,金属基体与增强粉末材金制成粉末,然后进行混合及热压成形。在粉末冶金法制备过程中,金属基体与增强粉末材料的组合、配比,颗粒尺寸的控制,混合过程均匀性的控制及热压成形工艺控制是材料性能料的组合、配比,颗粒尺寸的控制,混合过程均匀性的控制及热压成形工艺控制是材料性能控制的主要环节。而液相法需要考虑的问题是合金液与增强颗粒的润湿特性及化学作用。控制的主要环节。而液相法需要考虑的问题是合金液与增

49、强颗粒的润湿特性及化学作用。n生产成本生产成本:作为工业结构材料,复合材料的生产成本是需要考虑的重要因素。:作为工业结构材料,复合材料的生产成本是需要考虑的重要因素。 颗粒增强金属基复合材料液相法制备技术包括搅拌混合法,浸渗法,共喷射沉积法等颗粒增强金属基复合材料液相法制备技术包括搅拌混合法,浸渗法,共喷射沉积法等。 (1)搅拌混合法)搅拌混合法 进行搅拌混合可以在增强颗粒之间施加剪切力,即使合金液不能润湿增强颗粒,也可使进行搅拌混合可以在增强颗粒之间施加剪切力,即使合金液不能润湿增强颗粒,也可使增强颗粒在合金液中均匀混合。随着固相颗粒的加入,合金液的粘度迅速增大。因此,搅增强颗粒在合金液中均

50、匀混合。随着固相颗粒的加入,合金液的粘度迅速增大。因此,搅拌法适合于低固相颗粒分数复合材料的制备,固相颗粒体积分数一般低于拌法适合于低固相颗粒分数复合材料的制备,固相颗粒体积分数一般低于30%。加入固相。加入固相颗粒后,合金液表现出一定的流变特性。颗粒后,合金液表现出一定的流变特性。 如果如果对合金液与增合金液与增强强颗粒混合物在不断粒混合物在不断搅拌的同拌的同时连续冷却,冷却,则可在部分合金液可在部分合金液发生凝生凝固后仍然保持一定的流固后仍然保持一定的流动性,并可性,并可进行半固行半固态铸造或半固造或半固态挤压。 混合混合过程程对搅拌工拌工艺的主要要求的主要要求n 使增使增强强颗粒尽可能分

51、散、均匀地分布在合金液中。粒尽可能分散、均匀地分布在合金液中。n 能有效防止增能有效防止增强强颗粒及合金液与粒及合金液与环境气体境气体发生化学作生化学作 用引起的用引起的污染。染。n 避免增避免增强强颗粒的粒的损失,失,获得高的得高的实际利用率。利用率。n 具有尽可能高的生具有尽可能高的生产效率和低的生效率和低的生产成本。成本。图8-18所示所示为Mohanty 等采用的向合金液加入增等采用的向合金液加入增强强颗粒粒设备的原理的原理图。增。增强强颗粒在流化床内采用惰性气体流化粒在流化床内采用惰性气体流化后后导入入连续搅拌的合金液中。用拌的合金液中。用该方法向方法向铝合金液中加合金液中加入入较稳

52、定的或活性的定的或活性的颗粒均粒均获得理想的效果。得理想的效果。 (2)浸渗法制备技术)浸渗法制备技术 颗粒增强复合材料浸渗法是将合金液在一定的压力下浸渗到颗粒堆积床或成形的预制颗粒增强复合材料浸渗法是将合金液在一定的压力下浸渗到颗粒堆积床或成形的预制体中获得高颗粒分数复合材料的方法体中获得高颗粒分数复合材料的方法。为了使合金液能够充分渗入堆积床的所有孔隙,获。为了使合金液能够充分渗入堆积床的所有孔隙,获得致密的复合材料,可对堆积床预先抽真空。得致密的复合材料,可对堆积床预先抽真空。由于堆积床内增强颗粒是密堆的,获得的复由于堆积床内增强颗粒是密堆的,获得的复合材料中增强颗粒的体积分数很高,通常

53、都在合材料中增强颗粒的体积分数很高,通常都在50%以上,可作为复合材料母合金,加到其以上,可作为复合材料母合金,加到其他合金液中配成不同颗粒分数的复合材料他合金液中配成不同颗粒分数的复合材料。 正是由于高的颗粒分数,增强颗粒的热容量非常大,对堆积床的预热和浸渗温度的控正是由于高的颗粒分数,增强颗粒的热容量非常大,对堆积床的预热和浸渗温度的控制显得非常重要。制显得非常重要。可通过等温浸渗或变温浸渗完成浸渗过程可通过等温浸渗或变温浸渗完成浸渗过程。 该项技技术是由美国的是由美国的Alcon公司于公司于1960年最先年最先发明,明,经过不断改不断改进,逐步,逐步发展展为能控制能控制熔体温度、熔体温度

54、、预制体温度、冷却速度、制体温度、冷却速度、压力等工力等工艺参数的工参数的工业性制造方法。熔体性制造方法。熔体进入入预制体制体有三种方式:底部有三种方式:底部压入式、入式、顶部引入式和部引入式和顶部部压入式。入式。 真空真空压力浸渗技力浸渗技术制造金属基复合材料的工制造金属基复合材料的工艺流程流程图如如图24-5所示。所示。(3)共喷射沉积法)共喷射沉积法 图图8-26是美国是美国ALCAN公司早在公司早在70年代设计的共年代设计的共喷射沉积喷射沉积SiC颗粒增强铝基复合材料制备的工作原理图。颗粒增强铝基复合材料制备的工作原理图。在合金液雾化器喷嘴附近将增强颗粒引入雾化的合金液在合金液雾化器喷嘴附近将增强颗粒引入雾化的合金液粉末中沉积成锭。未被沉积的合金液粉末在飞行过程中粉末中沉积成锭。未被沉积的合金液粉末在飞行过程中凝固,并与偏离沉积方向的增强颗粒一起被循环气流带凝固,并与偏离沉积方向的增强颗粒一起被循环气流带 入收集室获得混合入收集室获得混合 的粉末材料。增强的粉末材料。增强 颗粒的引入位置决颗粒的引入位置决 定了它是在较低的速度下进入合金液并与合金液同时定了它是在较低的速度下进入合金液并与合金液同时 雾化。雾化。n课后作业:课后作业: 阅读第六章阅读第六章复合材料复合材料。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号