《线性代数利用性质计算行列式》由会员分享,可在线阅读,更多相关《线性代数利用性质计算行列式(17页珍藏版)》请在金锄头文库上搜索。
1、行列式的性质行列式的性质1一、行列式的性质一、行列式的性质行列式行列式 称为行列式称为行列式 的的转置行列式转置行列式. . 若记若记 ,则,则 .记记性质性质1 行列式与它的转置行列式相等行列式与它的转置行列式相等, ,即即 .2性质性质1 行列式与它的转置行列式相等行列式与它的转置行列式相等. .证明证明根据行列式的定义,有根据行列式的定义,有若记若记 ,则,则行列式中行与列具有同等的地位行列式中行与列具有同等的地位, ,行列式的性质凡是对行行列式的性质凡是对行成立的对列也同样成立成立的对列也同样成立. .3性质性质2 互换行列式的两行(列)互换行列式的两行(列), ,行列式变号行列式变号
2、. .验证验证于是于是推论推论 如果行列式有两行(列)完全相同,则此行列式为零如果行列式有两行(列)完全相同,则此行列式为零. .证明证明互换相同的两行,有互换相同的两行,有 ,所以,所以 . 备注:交换第备注:交换第 行(列)和第行(列)和第 行(列),记作行(列),记作 . .4性质性质3 行列式的某一行(列)中所有的元素都乘以同一个行列式的某一行(列)中所有的元素都乘以同一个倍数倍数 ,等于用数,等于用数 乘以此行列式乘以此行列式. .验证验证我们以我们以三三阶行列式为例阶行列式为例. . 记记 根据三阶行列式的对角线法则,有根据三阶行列式的对角线法则,有备注:第备注:第 行(列)乘以行
3、(列)乘以 ,记作,记作 . .5推论推论 行列式的某一行(列)中所有元素的公因子可以提行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面到行列式符号的外面备注:第备注:第 行(列)提出公因子行(列)提出公因子 ,记作,记作 . .6验证验证我们以我们以4阶行列式为例阶行列式为例. . 性质性质4 行列式中如果有两行(列)元素成比例,则此行列行列式中如果有两行(列)元素成比例,则此行列式为零式为零7性质性质5 若行列式的某一列(行)的元素都是两数之和若行列式的某一列(行)的元素都是两数之和, ,例如:例如:则则8验证验证我们以我们以三三阶行列式为例阶行列式为例. . 9性质性质6
4、把行列式的某一列(行)的各元素乘以同一个倍数把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列然后加到另一列( (行行) )对应的元素上去,行列式不变对应的元素上去,行列式不变则则验证验证我们以我们以三三阶行列式为例阶行列式为例. . 记记 备注:以数备注:以数 乘第乘第 行(列)加到第行(列)加到第 行(列)上,记作行(列)上,记作 . .10例例二、应用举例二、应用举例计算行列式常用方法:利用运算把行列式化为计算行列式常用方法:利用运算把行列式化为上三角形行列式,从而算得行列式的值上三角形行列式,从而算得行列式的值11解解12例例2 计算计算 阶行列式阶行列式解解将第将第 列都加到
5、第一列得列都加到第一列得13例例3 设设 证明证明 14证明证明对对 作运算作运算 ,把,把 化为下三角形行列式化为下三角形行列式 设为设为对对 作运算作运算 ,把,把 化为下三角形行列式化为下三角形行列式 设为设为15对对 D 的前的前 k 行作运算行作运算 ,再对后,再对后 n 列作运算列作运算 ,把把 D 化为下三角形行列式化为下三角形行列式故故16 ( (行列式中行与列具有同等行列式中行与列具有同等的地位的地位, , 凡是对行成立的性质对列也同样成立凡是对行成立的性质对列也同样成立).). 计算行列式常用方法:计算行列式常用方法:(1)(1)利用定义利用定义;(2);(2)利利用性质把行列式化为上三角形行列式,从而算得用性质把行列式化为上三角形行列式,从而算得行列式的值行列式的值三、小结三、小结行列式的行列式的6 6个性质个性质17