高等材料力学课件第一章绪论

上传人:博****1 文档编号:580186671 上传时间:2024-08-28 格式:PPT 页数:32 大小:8.79MB
返回 下载 相关 举报
高等材料力学课件第一章绪论_第1页
第1页 / 共32页
高等材料力学课件第一章绪论_第2页
第2页 / 共32页
高等材料力学课件第一章绪论_第3页
第3页 / 共32页
高等材料力学课件第一章绪论_第4页
第4页 / 共32页
高等材料力学课件第一章绪论_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《高等材料力学课件第一章绪论》由会员分享,可在线阅读,更多相关《高等材料力学课件第一章绪论(32页珍藏版)》请在金锄头文库上搜索。

1、第一章第一章 绪论绪论 研究对象和任务研究对象和任务基本假设基本假设发展与工程应用发展与工程应用目录目录1.1 弹性力学的任务弹性力学的任务1.2 弹性力学的基本假设弹性力学的基本假设1.3 弹性力学的发展和研究方法弹性力学的发展和研究方法1.1 弹性力学的任务弹性力学的任务弹性力学弹性力学也称也称弹性理论弹性理论固体力学学科的一个分支固体力学学科的一个分支 基本任务基本任务研究由于载荷或者温度改变,研究由于载荷或者温度改变,弹性体弹性体内内部所产生的位移、变形和应力分布等。部所产生的位移、变形和应力分布等。为解决工程结构的强度,刚度和稳定性问题为解决工程结构的强度,刚度和稳定性问题作准备。作

2、准备。 构件承载能力构件承载能力分析是分析是固体力学的基本任务固体力学的基本任务不同的学科分支,研究对象和方法是不同的不同的学科分支,研究对象和方法是不同的研究对象研究对象弹性体弹性体研究内容和基本任务与材料力学研究内容和基本任务与材料力学基本相同基本相同研究对象研究对象近似近似研究方法研究方法却有比较大的差别却有比较大的差别1.1 弹性力学任务弹性力学任务2材料力学的研究对象是杆件,平面假设确定材料力学的研究对象是杆件,平面假设确定横截面变形。横截面变形。一维数学问题一维数学问题,求解的基本方程是常微,求解的基本方程是常微分方程。分方程。弹性力学的弹性力学的研究对象研究对象是是完全弹性体完全

3、弹性体。只能从只能从微分单元体微分单元体入手,入手,三维数学问题三维数学问题,综合分析的结果是,综合分析的结果是偏微分偏微分方程边值问题方程边值问题。1.1 弹性力学任务弹性力学任务3建筑工程1.1 弹性力学任务弹性力学任务4建筑工程1.1 弹性力学任务弹性力学任务5航空航天工程1.1 弹性力学任务弹性力学任务6船舶机械工程1.1 弹性力学任务弹性力学任务71.1 弹性力学任务弹性力学任务8弹性弹性是变形固体的基本属性。是变形固体的基本属性。“完全弹性完全弹性”是对弹性体变形的抽象。是对弹性体变形的抽象。完全弹性使得物体变形成为一种理想模型。完全弹性使得物体变形成为一种理想模型。完全弹性是指在

4、一定温度条件下,材料的应力完全弹性是指在一定温度条件下,材料的应力和应变之间一一对应的关系。和应变之间一一对应的关系。这种关系与时间无关,也与变形历史无关。这种关系与时间无关,也与变形历史无关。材料的应力和应变关系通常称为材料的应力和应变关系通常称为本构关系本构关系;物理关系物理关系或者或者物理方程物理方程线性弹性体线性弹性体和和非线性弹性体非线性弹性体1.1 弹性力学任务弹性力学任务9常微分方程,数学求解没有困难。常微分方程,数学求解没有困难。偏微分方程边值问题,在数学上求解困难重重,偏微分方程边值问题,在数学上求解困难重重,除了少数特殊问题,一般弹性体问题很难得到除了少数特殊问题,一般弹性

5、体问题很难得到解析解。解析解。这里并不是说弹性力学分析不再需要假设,事这里并不是说弹性力学分析不再需要假设,事实上对于任何学科,如果不对研究对象作必要实上对于任何学科,如果不对研究对象作必要的抽象和简化,研究工作都是寸步难行的。的抽象和简化,研究工作都是寸步难行的。 研究方法的差别造成弹性力学与材料力学问题的最大不同。1.1 弹性力学任务弹性力学任务11工程问题的复杂性是诸多方面因素组成的。如工程问题的复杂性是诸多方面因素组成的。如果不分主次考虑所有因素,则问题的复杂,数果不分主次考虑所有因素,则问题的复杂,数学推导的困难,将使得问题无法求解。学推导的困难,将使得问题无法求解。根据问题性质,忽

6、略部分暂时不必考虑的因素,根据问题性质,忽略部分暂时不必考虑的因素,提出一些基本假设。使问题的研究限定在一个提出一些基本假设。使问题的研究限定在一个可行的范围。可行的范围。基本假设是学科的研究基础。基本假设是学科的研究基础。超出基本假设的研究领域是固体力学其它学科超出基本假设的研究领域是固体力学其它学科的研究。的研究。1.2 弹性力学基本假设弹性力学基本假设工程材料通常可以分为工程材料通常可以分为晶体晶体和和非晶体非晶体两种。两种。金属材料金属材料晶体材料,是由许多原子,离子晶体材料,是由许多原子,离子按一定规则排列起来的空间格子构成,其中间按一定规则排列起来的空间格子构成,其中间经常会有缺陷

7、存在。经常会有缺陷存在。高分子材料高分子材料非晶体材料,由许多分子的集非晶体材料,由许多分子的集合组成的分子化合物。合组成的分子化合物。工程材料内部的缺陷、夹杂和孔洞等构成了固工程材料内部的缺陷、夹杂和孔洞等构成了固体材料微观结构的复杂性。体材料微观结构的复杂性。1.2 基本假设基本假设21.1. 连续性假设连续性假设 假设所研究的整个弹性体内部完全由组成假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何物体的介质所充满,各个质点之间不存在任何空隙。空隙。变形后仍然保持连续性。变形后仍然保持连续性。根据这一假设,物体所有物理量,例如位移、根据这一假设,物体所有物理量,

8、例如位移、应变和应力等均为物体空间的连续函数。应变和应力等均为物体空间的连续函数。微观上这个假设不可能成立微观上这个假设不可能成立宏观假设。宏观假设。1.2 基本假设基本假设32.2. 均匀性假设均匀性假设 假设弹性物体是由同一类型的均匀材料假设弹性物体是由同一类型的均匀材料组成的。因此物体各个部分的物理性质都是组成的。因此物体各个部分的物理性质都是相同的,不随坐标位置的变化而改变。相同的,不随坐标位置的变化而改变。物体的弹性性质处处都是相同的。物体的弹性性质处处都是相同的。工程材料,例如混凝土颗粒远远小于物体的工程材料,例如混凝土颗粒远远小于物体的的几何形状,并且在物体内部均匀分布,从的几何

9、形状,并且在物体内部均匀分布,从宏观意义上讲,也可以视为均匀材料。宏观意义上讲,也可以视为均匀材料。对于环氧树脂基碳纤维复合材料,不能处理对于环氧树脂基碳纤维复合材料,不能处理为均匀材料。为均匀材料。1.2 基本假设基本假设43.3. 各向同性假设各向同性假设 假定物体在各个不同的方向上具有相同假定物体在各个不同的方向上具有相同的物理性质,这就是说物体的弹性常数将不的物理性质,这就是说物体的弹性常数将不随坐标方向的改变而变化。随坐标方向的改变而变化。 宏观假设,材料性能是显示各向同性。宏观假设,材料性能是显示各向同性。当然,像木材,竹子以及纤维增强材料等,当然,像木材,竹子以及纤维增强材料等,

10、属于各向异性材料。属于各向异性材料。这些材料的研究属于复合材料力学研究这些材料的研究属于复合材料力学研究的对象。的对象。1.2 基本假设基本假设54.4. 完全弹性假设完全弹性假设 对应一定的温度,如果对应一定的温度,如果应力和应变之应力和应变之间存在一一对应关系间存在一一对应关系,而且这个关系和时,而且这个关系和时间无关,也和变形历史无关,称为完全弹间无关,也和变形历史无关,称为完全弹性材料。性材料。完全弹性分为线性和非线性弹性,弹性力完全弹性分为线性和非线性弹性,弹性力学研究限于线性的应力与应变关系。学研究限于线性的应力与应变关系。研究对象的材料弹性常数不随应力或应变研究对象的材料弹性常数

11、不随应力或应变的变化而改变。的变化而改变。1.2 基本假设基本假设65.5. 小变形假设小变形假设 假设在外力或者其他外界因素(如温度假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。尺寸相比属于高阶小量。在弹性体的平衡等问题讨论时,可以不在弹性体的平衡等问题讨论时,可以不考虑因变形所引起的尺寸变化。考虑因变形所引起的尺寸变化。忽略位移、应变和应力等分量的高阶小忽略位移、应变和应力等分量的高阶小量,使基本方程成为线性的偏微分方程组。量,使基本方程成为线性的偏微分方程组。 1.2 基本假设基本假设7假设物体处于自然

12、状态,即在外界因素假设物体处于自然状态,即在外界因素作用之前,物体内部没有应力。作用之前,物体内部没有应力。弹性力学求解的应力仅仅是外力或温度改变弹性力学求解的应力仅仅是外力或温度改变而产生的。而产生的。6.6. 无初始应力假设无初始应力假设 1.2 基本假设基本假设8弹性力学的基本假设,主要包括弹性体的连续性、均匀性、各向同性、完全弹性和小变形假设等。这些假设都是关于材料变形的宏观假设。弹性力学问题的讨论中,如果没有特别的提示,均采用基本假设。这些基本假设被广泛的实验和工程实践证实是可行的。1.2 基本假设基本假设91.3 弹性力学的发展弹性力学的发展和研究方法和研究方法弹性力学是一门有悠久

13、历史的学科,早期弹性力学是一门有悠久历史的学科,早期研究可以追溯到研究可以追溯到16781678年,胡克年,胡克(R.HookeR.Hooke)发现胡克定律。发现胡克定律。这一时期的研究工作主要是通过实验方法这一时期的研究工作主要是通过实验方法探索物体的受力与变形之间的关系。探索物体的受力与变形之间的关系。近代弹性力学的研究是近代弹性力学的研究是从从1919世纪开始的。世纪开始的。柯西柯西18281828年提出应力、年提出应力、应变概念,建立了平衡微应变概念,建立了平衡微分方程,几何方程和广义分方程,几何方程和广义胡克定律。胡克定律。柯西的工作是近代弹性柯西的工作是近代弹性力学的一个起点,使得

14、弹力学的一个起点,使得弹性力学成为一门独立的固性力学成为一门独立的固体力学分支学科。体力学分支学科。 1.3 发展与研究方法发展与研究方法2柯西(柯西(A.L.CauchyA.L.Cauchy)而后,世界各国的一批而后,世界各国的一批学者相继进入弹性力学学者相继进入弹性力学研究领域,使弹性力学研究领域,使弹性力学进入发展阶段。进入发展阶段。18561856年,年,圣维南圣维南(A.J.Saint-VenantA.J.Saint-Venant)建立了柱体扭转和弯曲建立了柱体扭转和弯曲的基本理论;的基本理论;1.3 发展与研究方法发展与研究方法3圣维南圣维南(A.J.Saint-VenantA.J

15、.Saint-Venant)18621862年,艾瑞年,艾瑞(G.B.AiryG.B.Airy)发表了关于弹)发表了关于弹性力学的平面理论;性力学的平面理论;18811881年,赫兹建立了接触年,赫兹建立了接触应力理论;应力理论;1.3 发展与研究方法发展与研究方法4赫兹(赫兹(H.HertzH.Hertz)18981898年,年,基尔霍夫基尔霍夫建立建立了平板理论了平板理论; ;1824年生於德国,1887年逝世。曾在海登堡大学和柏林大学任物理学教授,他发现了电学中的“基尔霍夫定理”,同时也对弹性力学,特别是薄板理论的研究作出重要贡献。1.3 发展与研究方法发展与研究方法5基尔霍夫基尔霍夫(

16、 (G.R.KirchoffG.R.Kirchoff) )19301930年,年,发展了应用复变发展了应用复变函数理论求解弹性力学问题的方法等。函数理论求解弹性力学问题的方法等。另一个重要理论成果是建立种能量原理;另一个重要理论成果是建立种能量原理;提出一系列基于能量原理的近似计算方法。提出一系列基于能量原理的近似计算方法。许多科学家许多科学家. .像拉格朗日像拉格朗日(J.L.Lagrange),乐乐甫甫(A.E.H.Love),铁木辛柯铁木辛柯(S.P.Timoshenko)做出了贡献。做出了贡献。中国科学家钱伟长,钱学森,徐芝伦,胡海中国科学家钱伟长,钱学森,徐芝伦,胡海昌昌, ,等在弹

17、性力学的发展,特别是在中国的推等在弹性力学的发展,特别是在中国的推广应用做出了重要广应用做出了重要贡献。贡献。1.3 发展与研究方法发展与研究方法6钱伟长钱学森胡海昌1.3 发展与研究方法发展与研究方法7徐芝伦杨桂通1.3 发展与研究方法发展与研究方法8弹性力学弹性力学促进数学和自然科学基本理论的促进数学和自然科学基本理论的建立和发展;建立和发展;广泛工程应用广泛工程应用造船、建筑、航空和机械制造船、建筑、航空和机械制造等。造等。发展发展形成了一些专门的分学科;形成了一些专门的分学科;现代科学技术和工程技术现代科学技术和工程技术仍然提出新的理仍然提出新的理论和工程问题。论和工程问题。对于现代工

18、程技术和科研工作者的培养对于现代工程技术和科研工作者的培养对对于专业基础,思维方法以及独立工作能力都有于专业基础,思维方法以及独立工作能力都有不可替代的作用。不可替代的作用。1.3 发展与研究方法发展与研究方法9数学数学方法方法实验实验方法方法二者结合的方法二者结合的方法弹性力学的基本方程弹性力学的基本方程偏微分方程的边值偏微分方程的边值问题问题,求解的方法有解析法和近似解法。,求解的方法有解析法和近似解法。解析法在数学上难度极大,因此仅适用于个解析法在数学上难度极大,因此仅适用于个别特殊边界条件问题。别特殊边界条件问题。近似解法对于弹性力学有重要意义。近似解法对于弹性力学有重要意义。1.3

19、发展与研究方法发展与研究方法10数值解法数值解法计算机处理的近似解法。计算机处理的近似解法。现代科学技术,特别是计算机技术的迅速发现代科学技术,特别是计算机技术的迅速发展和广泛应用为基础。展和广泛应用为基础。有限元方法为代表的计算力学。有限元方法为代表的计算力学。以有限元为基础的以有限元为基础的CAD, CAE等技术,使计算等技术,使计算机不仅成为数值分析工具,而且成为设计分析机不仅成为数值分析工具,而且成为设计分析工具。工具。有限元方法以弹性力学为基础,有限元方法以弹性力学为基础,有限元方法将计算数学与工程分析相结合,有限元方法将计算数学与工程分析相结合,极大地扩展和延伸了弹性力学理论与方法,取极大地扩展和延伸了弹性力学理论与方法,取得了当代力学理论应用的高度成就。得了当代力学理论应用的高度成就。1.3 发展与研究方法发展与研究方法11

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号