生态学统计问题

上传人:公**** 文档编号:579768510 上传时间:2024-08-27 格式:PPT 页数:105 大小:493.50KB
返回 下载 相关 举报
生态学统计问题_第1页
第1页 / 共105页
生态学统计问题_第2页
第2页 / 共105页
生态学统计问题_第3页
第3页 / 共105页
生态学统计问题_第4页
第4页 / 共105页
生态学统计问题_第5页
第5页 / 共105页
点击查看更多>>
资源描述

《生态学统计问题》由会员分享,可在线阅读,更多相关《生态学统计问题(105页珍藏版)》请在金锄头文库上搜索。

1、邯畏丛灵外屏柞掌锨寅预酵射礼陷萧山硕酿章滑茨招究掘傅劲业位桥抵专生态学统计问题生态学统计问题数据分析中数理统计方法的正确使用报告人:张利田张利田环境科学学报编委会执行副主编、编辑部主任 2007-11-26赃提逛御眯熟扎怒建明磷袍廖露乖镐丹没嗅齿坠婉溅豁吞宝播煽川归恨所生态学统计问题生态学统计问题重要假定n作者所处理的数据属于随机变量的特定样本。作者所处理的数据属于随机变量的特定样本。n作者已经掌握最基本的数理统计学常识,如概率、作者已经掌握最基本的数理统计学常识,如概率、假设检验、均值、方差、标准差、正态分布、相假设检验、均值、方差、标准差、正态分布、相关分析、回归分析、方差分析关分析、回归

2、分析、方差分析。琴乐膳五备雕躺炳皂端豌哈嘲殴牧荔迢赡旁伞申召恼蛤对尊檬买旧峦研糕生态学统计问题生态学统计问题数理统计问题的重要性数理统计问题的重要性n在科学研究中,经常会涉及到对随机变量在科学研究中,经常会涉及到对随机变量大小大小、离散离散及及分布分布特征的描述以及对特征的描述以及对2 2个或多个随机变量之间的个或多个随机变量之间的关系关系描述问题。描述问题。地学、环境科学研究也不例外地学、环境科学研究也不例外。n对随机变量及随机变量之间的关系进行定量描述的数学工具就对随机变量及随机变量之间的关系进行定量描述的数学工具就是是数理统计学数理统计学。n在科学研究中,能否正确使用各种数理统计方法关系

3、到所得出在科学研究中,能否正确使用各种数理统计方法关系到所得出结论的客观性和可信性。所以,结论的客观性和可信性。所以,来稿中使用的数理统计方法是来稿中使用的数理统计方法是否正确否正确应是学术期刊编辑们极为重视的问题。应是学术期刊编辑们极为重视的问题。n目前,国内环境科学与技术类学术期刊对稿件中数理统计方法目前,国内环境科学与技术类学术期刊对稿件中数理统计方法问题的重视程度存在差异。问题的重视程度存在差异。 机属酶睫榜瞻厌慌份藐寞施刊朵戮究请婆壳较蹬泊次檬橡芹扶镰贾每弛糕生态学统计问题生态学统计问题1 统计软件的选择统计软件的选择 n统计分析通常涉及大量的数据,需要较大的计统计分析通常涉及大量的

4、数据,需要较大的计算工作量。算工作量。n在进行统计分析时,尽管作者可以自行编写计在进行统计分析时,尽管作者可以自行编写计算程序,但在统计软件很普及的今天,这样做算程序,但在统计软件很普及的今天,这样做是毫无必要的。是毫无必要的。n出于对出于对工作效率工作效率以及对以及对算法的通用性、可比性算法的通用性、可比性的考虑,一些学术期刊要求作者采用专门的数的考虑,一些学术期刊要求作者采用专门的数理统计软件进行统计分析。理统计软件进行统计分析。 嵌甸岿烽箍谆炳尾七榴窖崩湛泥甥烫议肺湘芜壹斜蘑考拴隧的喀讽笑佬祷生态学统计问题生态学统计问题1 统计软件的选择统计软件的选择n环境科学学报的编辑们在处理稿件时环

5、境科学学报的编辑们在处理稿件时经常发现的问题是:经常发现的问题是:作者未使用专门的数作者未使用专门的数理统计软件,而采用理统计软件,而采用Excel这样的电子表格这样的电子表格软件进行数据统计分析。软件进行数据统计分析。n由于电子表格软件提供的统计分析功能十由于电子表格软件提供的统计分析功能十分有限,只能借助它进行较为简单的统计分有限,只能借助它进行较为简单的统计分析,故我们不主张作者采用这样的软件分析,故我们不主张作者采用这样的软件进行统计分析。进行统计分析。 扔粮虾款雨驻舔续斩仔忽较凯箭糟姑狄驱钱萌笋粤坷骄尊挡内搬根疫秩员生态学统计问题生态学统计问题1 统计软件的选择统计软件的选择n目前,

6、国际上已开发出的专门用于统计分析的商业目前,国际上已开发出的专门用于统计分析的商业软件很多,比较著名有软件很多,比较著名有SPSS(Statistical Package for Social Sciences)和和SAS(Statistical Analysis System)。此外,还有此外,还有BMDP和和STATISTICA等等。nSPSS是专门为社会科学领域的研究者设计的,但是专门为社会科学领域的研究者设计的,但此软件在自然科学领域也得到广泛应用。此软件在自然科学领域也得到广泛应用。nBMDP是专门为生物学和医学领域研究者编制的统是专门为生物学和医学领域研究者编制的统计软件。计软件。

7、 袍硬伙诫椭亚坐处晓注铅矣聂限活粱甄虚涟隘爬龙钨说鸯尹刘峭温饲测啮生态学统计问题生态学统计问题1 1 统计软件的选择统计软件的选择n目前,国际学术界有一条不成文的约定:凡目前,国际学术界有一条不成文的约定:凡是用是用SPSS和和SAS软件进行统计分析所获得的软件进行统计分析所获得的结果,在国际学术交流中不必说明具体算法。结果,在国际学术交流中不必说明具体算法。由此可见,由此可见,SPSS和和SAS软件已被各领域研究软件已被各领域研究者普遍认可。者普遍认可。n我们建议作者们在进行统计分析时尽量使用我们建议作者们在进行统计分析时尽量使用这这2个专门的统计软件。目前,有关这个专门的统计软件。目前,有

8、关这2个软个软件的使用教程在书店中可很容易地买到。件的使用教程在书店中可很容易地买到。 丛路犊熔钻赂弱析氛形滞谣读皑泌绸延训邓残犯字懒因情感樱州巳稠荚得生态学统计问题生态学统计问题2 2 均值的计算均值的计算 :理论问题n均值(准确的称呼应为均值(准确的称呼应为“样本均值样本均值”)的统计学意义:反)的统计学意义:反映随机变量样本的大小特征。映随机变量样本的大小特征。n均值对应于随机变量总体的数学期望均值对应于随机变量总体的数学期望总体的数学期望客总体的数学期望客观上决定着样本的均值,反过来,通过计算样本的均值可观上决定着样本的均值,反过来,通过计算样本的均值可以描述总体的数学期望。以描述总体

9、的数学期望。n在处理实验数据或采样数据时,经常会遇到对相同采样或在处理实验数据或采样数据时,经常会遇到对相同采样或相同实验条件下同一随机变量的多个不同取值进行统计处相同实验条件下同一随机变量的多个不同取值进行统计处理的问题。理的问题。n为找到代表这些观测值总体大小特征的代表值(统计量,为找到代表这些观测值总体大小特征的代表值(统计量,该统计量根据样本数据算出),多数作者会不假思索地直该统计量根据样本数据算出),多数作者会不假思索地直接给出算术平均值和标准差。显然,这种做法是不严谨的接给出算术平均值和标准差。显然,这种做法是不严谨的不一定总是正确的。不一定总是正确的。哇困苍湘媒笺赂软卯娩控朱遣你

10、痉粉窜异噪悉姿白坦妒谢奖踩篆邵皿报竟生态学统计问题生态学统计问题2 均值的计算:技术问题均值的计算:技术问题n在数理统计学中,作为描述随机变量样本的在数理统计学中,作为描述随机变量样本的总体大小特征的统计量有算术平均值、几何总体大小特征的统计量有算术平均值、几何平均值和中位数等多个。平均值和中位数等多个。n何时用算术平均值?何时用几何平均值?以何时用算术平均值?何时用几何平均值?以及何时用中位数?及何时用中位数?这不能由研究者根据主观这不能由研究者根据主观意愿随意确定,而要根据随机变量的分布特意愿随意确定,而要根据随机变量的分布特征确定征确定。 瘁丘款逾臼亡桥晨皑冤寓漆叔都祸蚌寸陇世昌枯雄甩鸥

11、疟寅痘僵傣忿守朗生态学统计问题生态学统计问题2 均值的计算:技术问题均值的计算:技术问题n反映随机变量总体大小特征的统计量是数学期望,而在随机反映随机变量总体大小特征的统计量是数学期望,而在随机变量的分布服从正态分布时,其数学期望就可以用样本的算变量的分布服从正态分布时,其数学期望就可以用样本的算术平均值描述。此时,可用样本的术平均值描述。此时,可用样本的算术平均值算术平均值描述随机变量描述随机变量的大小特征。的大小特征。n如果所研究的随机变量不服从正态分布,则算术平均值不能如果所研究的随机变量不服从正态分布,则算术平均值不能准确反映该变量的大小特征。在这种情况下,可通过假设检准确反映该变量的

12、大小特征。在这种情况下,可通过假设检验来判断随机变量是否服从对数正态分布。如果服从对数正验来判断随机变量是否服从对数正态分布。如果服从对数正态分布,则几何平均值就是数学期望的值。此时,就可以计态分布,则几何平均值就是数学期望的值。此时,就可以计算变量的算变量的几何平均值几何平均值。n如果随机变量既不服从正态分布也不服从对数正态分布,则如果随机变量既不服从正态分布也不服从对数正态分布,则按现有的数理统计学知识,尚无合适的统计量描述该变量的按现有的数理统计学知识,尚无合适的统计量描述该变量的大小特征。此时,可用大小特征。此时,可用中位数中位数来描述变量的大小特征。来描述变量的大小特征。 另叙预梳镑

13、毯辐渍孵瞳饱皖磕澡灯茧古敷恒窖牟崭迁硬再描鸭磕颤劣歹袍生态学统计问题生态学统计问题3 3 相关分析相关分析:相关系数的选择:相关系数的选择 n在相关分析中,作者们常犯的错误是:简单地计算在相关分析中,作者们常犯的错误是:简单地计算Pearson 积矩相关系数,而且既不给出正态分布检验结果,也往往不积矩相关系数,而且既不给出正态分布检验结果,也往往不明确指出所计算的相关系数就是明确指出所计算的相关系数就是Pearson 积矩相关系数。积矩相关系数。n在数理统计学中,除有针对数值变量设计的在数理统计学中,除有针对数值变量设计的Pearson 积矩积矩相关系数(对应于相关系数(对应于 “参数方法参数

14、方法”)外,还有针对顺序变量)外,还有针对顺序变量(即(即“秩变量秩变量”)设计的)设计的Spearman秩相关系数和秩相关系数和Kendall秩相关系数(对应于秩相关系数(对应于 “非参数方法非参数方法”)等。)等。nPearson 积矩相关系数可用于描述积矩相关系数可用于描述2个随机变量的线性相关个随机变量的线性相关程度,程度,Spearman或或Kendall秩相关系数用来判断两个随机秩相关系数用来判断两个随机变量在二维和多维空间中是否具有某种共变趋势。变量在二维和多维空间中是否具有某种共变趋势。 撒表同酵品球聪咕缅延哉怔组谢弘扣煽蛇报岭骸汾艘鹤同才猖衰吱续讥搁生态学统计问题生态学统计问

15、题3 相关分析:相关系数的选择相关分析:相关系数的选择n在相关分析中,计算各种相关系数是有前提条件的。在相关分析中,计算各种相关系数是有前提条件的。n在相关分析中,对于秩变量,一般别无选择,只能在相关分析中,对于秩变量,一般别无选择,只能计算计算Spearman或或Kendall秩相关系数。秩相关系数。n对于数值变量,只要条件许可,应尽量使用对于数值变量,只要条件许可,应尽量使用检验功检验功效最高效最高的参数方法,即计算用的参数方法,即计算用Pearson 积矩相关积矩相关系数。只有计算系数。只有计算Pearson 积矩相关系数的前提不积矩相关系数的前提不存在时,才考虑退而求其次,计算专门为秩

16、变量存在时,才考虑退而求其次,计算专门为秩变量设计的设计的Spearman或或Kendall秩相关系数(秩相关系数(尽管这尽管这样做会导致检验功效的降低样做会导致检验功效的降低)。)。 腰鸽易浩沪瑚纠和哦骗汀戚韶帖貉枚先武煌摊肄逮烷塑蚜咯猫憋雷豆咏甸生态学统计问题生态学统计问题3 相关分析:相关系数的选择相关分析:相关系数的选择n对于数值变量,相关系数选择的依据是变量是否服从正态对于数值变量,相关系数选择的依据是变量是否服从正态分布,或变换后的数据是否服从正态分布。分布,或变换后的数据是否服从正态分布。n对于二元相关分析,如果对于二元相关分析,如果2个随机变量服从二元正态分布假个随机变量服从二

17、元正态分布假设,则应该用设,则应该用Pearson 积矩相关系数描述这积矩相关系数描述这2个随机变量个随机变量间的相关关系。间的相关关系。n如果样本数据不服从二元正态分布,则可尝试进行数据变如果样本数据不服从二元正态分布,则可尝试进行数据变换,看变换后的数据是否符合正态分布?如果是,则可以换,看变换后的数据是否符合正态分布?如果是,则可以针对变换后的数据计算针对变换后的数据计算Pearson 积矩相关系数;否则,就积矩相关系数;否则,就不能计算不能计算Pearson 积矩相关系数,而应改用检验功效较低积矩相关系数,而应改用检验功效较低的的Spearman或或Kendall秩相关系数(此时,如果

18、强行计算秩相关系数(此时,如果强行计算Pearson 积矩相关系数有可能会得出完全错误的结论)。积矩相关系数有可能会得出完全错误的结论)。凛窒蓉甄带相散佐苞阵么集篱佑艳菌蹈挑拣坚冻握醇坏光鹿廖朔检仇膛运生态学统计问题生态学统计问题4 相关分析与回归分析的区别相关分析与回归分析的区别 n相关分析和回归分析是极为常用的相关分析和回归分析是极为常用的2种数理种数理统计方法,在环境科学及其它科学研究领域统计方法,在环境科学及其它科学研究领域有着广泛的用途。然而,由于这有着广泛的用途。然而,由于这2种数理统种数理统计方法在计算方面存在很多相似之处,且在计方法在计算方面存在很多相似之处,且在一些数理统计教

19、科书中没有系统阐明这一些数理统计教科书中没有系统阐明这2种种数理统计方法的内在差别,从而使一些研究数理统计方法的内在差别,从而使一些研究者不能严格区分相关分析与回归分析者不能严格区分相关分析与回归分析 。钎爹朴阀钠哗宰择鸳调蹬豌盔间继涸睦泪社布毒签哮疹式卷兜刹既泡柑庭生态学统计问题生态学统计问题4 相关分析与回归分析的区别相关分析与回归分析的区别n最常见的错误是最常见的错误是:用回归分析的结果解释相用回归分析的结果解释相关性问题。例如,作者将关性问题。例如,作者将“回归直线(曲线)回归直线(曲线)图图”称为称为“相关性图相关性图”或或“相关关系图相关关系图”;将回归直线的将回归直线的R2(拟合

20、度,或称拟合度,或称“可决系数可决系数”)错误地称为错误地称为“相关系数相关系数”或或“相关系数相关系数的平方的平方”;根据回归分析的结果宣称;根据回归分析的结果宣称2个变个变量之间存在正的或负的相关关系。量之间存在正的或负的相关关系。 靛侵兜腐梆雾休蕴滋雹刺考硕看盖层朴枝久仕炒暇骂窟抹叔厘锗净峪癣仲生态学统计问题生态学统计问题4 相关分析与回归分析的区别相关分析与回归分析的区别n相关分析与回归分析均为研究相关分析与回归分析均为研究2个或多个个或多个变量间关联性的方法,但变量间关联性的方法,但2种数理统计方种数理统计方法存在本质的差别,即它们用于不同的法存在本质的差别,即它们用于不同的研究目的

21、。研究目的。n相关分析的目的在于检验两个随机变量相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预归分析的目的则在于试图用自变量来预测因变量的值。测因变量的值。 膝购笋篡沿挣师羊毅态卫伙腔台缅颧撼徘仟宗祝宇膝凹痢抄碱咽纹饲叮氮生态学统计问题生态学统计问题4 相关分析与回归分析的区别相关分析与回归分析的区别n在相关分析中,两个变量必须同时都是在相关分析中,两个变量必须同时都是随机变量,如果其中的一个变量不是随随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析。这是相机变量,就不能进行相关分析。这是相关

22、分析方法本身所决定的。关分析方法本身所决定的。 最商娜荤挺靛撂痹呵赏释稳京什乐铭与痒涝危涂扛双准经垫窟乱炊瓷为桨生态学统计问题生态学统计问题4 相关分析与回归分析的区别相关分析与回归分析的区别n对于回归分析,其中的因变量肯定为随对于回归分析,其中的因变量肯定为随机变量(这是回归分析方法本身所决定机变量(这是回归分析方法本身所决定的),而自变量则可以是普通变量(有的),而自变量则可以是普通变量(有确定的取值)也可以是随机变量。确定的取值)也可以是随机变量。 瞥艳痊典少涂残头沉鸭凌贫骄斜晾很椎宋涣朔灼畴袁纶抿饺氦挽哨季见唤生态学统计问题生态学统计问题4 相关分析与回归分析的区别相关分析与回归分析的

23、区别n如果自变量是普通变量,即模型如果自变量是普通变量,即模型回归分析,回归分析,采用的回归方法就是最为常用的最小二乘法。采用的回归方法就是最为常用的最小二乘法。n如果自变量是随机变量,如果自变量是随机变量,即模型即模型回归分析,回归分析,所采用的回归方法与计算者的目的有关。所采用的回归方法与计算者的目的有关。n在以预测为目的的情况下,仍采用在以预测为目的的情况下,仍采用“最小二乘法最小二乘法”(但精度下降(但精度下降最小二乘法是专为模型最小二乘法是专为模型 设计的,设计的,未考虑自变量的随机误差);未考虑自变量的随机误差);n在以估值为目的(如计算可决系数、回归系数等)在以估值为目的(如计算

24、可决系数、回归系数等)的情况下,应使用相对严谨的方法(如的情况下,应使用相对严谨的方法(如“主轴法主轴法”、“约化主轴法约化主轴法”或或“Bartlett“Bartlett法法” ” )。)。蜜铅歹族箭色词昨虽再嚏掂臼愁寓姥仿涛匀锦翼汲嚎榜亲赡速宙悯锑邪鸦生态学统计问题生态学统计问题4 相关分析与回归分析的区别相关分析与回归分析的区别n显然,对于回归分析,如果是模型显然,对于回归分析,如果是模型回归分析,鉴于两个回归分析,鉴于两个随机变量客观上存在随机变量客观上存在“相关性相关性”问题,只是由于回归分析问题,只是由于回归分析方法本身不能提供针对自变量和因变量之间相关关系的准方法本身不能提供针对

25、自变量和因变量之间相关关系的准确的检验手段,因此,若以预测为目的,最好不提确的检验手段,因此,若以预测为目的,最好不提“相关相关性性”问题;问题;若以探索两者的若以探索两者的“共变趋势共变趋势”为目的为目的,应该改,应该改用相关分析。用相关分析。n如果是模型如果是模型回归分析,就根本不可能回答变量的回归分析,就根本不可能回答变量的“相关性相关性”问题,问题,因为普通变量与随机变量之间不存在因为普通变量与随机变量之间不存在“相关性相关性”这一概念这一概念(问题在于,大多数的回归分析都是模型(问题在于,大多数的回归分析都是模型回归分回归分析!)。此时,即使作者想描述析!)。此时,即使作者想描述2个

26、变量间的个变量间的“共变趋势共变趋势”而改用相关分析,也会因相关分析的前提不存在而使分析而改用相关分析,也会因相关分析的前提不存在而使分析结果毫无意义。结果毫无意义。黔甄绦肮竣亡六溃蓝沽荆胸魁座剔斥证拳亢胆婆纵咬加绵鹤障栽剂炬蘑佩生态学统计问题生态学统计问题4 相关分析与回归分析的区别相关分析与回归分析的区别n需要特别指出的是,回归分析中的需要特别指出的是,回归分析中的R2在数学上恰好是在数学上恰好是Pearson积矩相关系数积矩相关系数r的平方。因此,这极易使作者们错的平方。因此,这极易使作者们错误地理解误地理解R2的含义,认为的含义,认为R2就是就是 “相关系数相关系数”或或“相关系相关系

27、数的平方数的平方”。问题在于,对于自变量是普通变量(即其取值。问题在于,对于自变量是普通变量(即其取值有确定性的变量)、因变量为随机变量的模型有确定性的变量)、因变量为随机变量的模型回归分析,回归分析,2个变量之间的个变量之间的“相关性相关性”概念根本不存在,又何谈概念根本不存在,又何谈“相关系相关系数数”呢?呢?n更值得注意的是,一些早期的教科书作者不是用更值得注意的是,一些早期的教科书作者不是用R2来描述回来描述回归效果(拟合程度,拟合度)的,而是用归效果(拟合程度,拟合度)的,而是用Pearson积矩相关积矩相关系数来描述。这就更容易误导读者。系数来描述。这就更容易误导读者。榨掌郊僧疮淆

28、碑途怂膜佬瓮揣笑耘圃押戊钓覆鲍瞄跳陌去拨男既凰桓伦广生态学统计问题生态学统计问题5 重要的数理统计学常识n1)假设检验n假设检验的基本思想假设检验的基本思想n统计推断统计推断:是根据样本数据推断总体特征的一种方法。:是根据样本数据推断总体特征的一种方法。n假设检验:假设检验:是进行是进行统计推断统计推断的途径之一(另一种途径是参数估计,的途径之一(另一种途径是参数估计,如点估计和区间估计)。如点估计和区间估计)。n假设检验的基本思路是假设检验的基本思路是:首先,对总体参数值提出假设(原假设);:首先,对总体参数值提出假设(原假设);然后,利用样本数据提供的信息来验证所提出的假设是否成立(统然后

29、,利用样本数据提供的信息来验证所提出的假设是否成立(统计推断)计推断)-如果样本数据提供的信息不能证明上述假设成立,则应如果样本数据提供的信息不能证明上述假设成立,则应拒绝该假设;如果样本数据提供的信息不能证明上述假设不成立,拒绝该假设;如果样本数据提供的信息不能证明上述假设不成立,则不应拒绝该假设。则不应拒绝该假设。n接受或拒绝原假设的依据接受或拒绝原假设的依据:小概率事件不可能发生。显然,这样做:小概率事件不可能发生。显然,这样做是有风险的(小概率事件真的发生了)。是有风险的(小概率事件真的发生了)。n假设检验中的关键问题假设检验中的关键问题:1)在原假设成立的情况下,如何计算样)在原假设

30、成立的情况下,如何计算样本值或某一极端值发生的概率?本值或某一极端值发生的概率?2)如何界定小概率事件?)如何界定小概率事件?迅淀线旅栋漾诬糜粥袋疽亢妈矮潮冬品喂榔参弛途刃冲狰陌糠浇洋兢事积生态学统计问题生态学统计问题5 重要的数理统计学常识n1)假设检验n假设检验的基本步骤n1)提出原假设(或称)提出原假设(或称“零假设零假设”,H0););n2)选择检验统计量;)选择检验统计量;n3)根据样本数据计算检验统计量观测值的发)根据样本数据计算检验统计量观测值的发生概率(相伴概率,生概率(相伴概率,p););n4)根据给定的小概率事件界定标准(显著性)根据给定的小概率事件界定标准(显著性水平,如

31、水平,如0.05,0.01)做出统计推断。)做出统计推断。眩牧窿村纂状独侄绦敞坞化榨精貉杀滨秘苟毋降佬烧侍腆铱伸亥吐琅伞绿生态学统计问题生态学统计问题假设检验的基本步骤n为什么要设计并计算检验统计量?为什么要设计并计算检验统计量?n在假设检验中,样本值(或更极端的取值)发生的概率在假设检验中,样本值(或更极端的取值)发生的概率不能直接通过样本数据计算,而是通过计算不能直接通过样本数据计算,而是通过计算检验统计量检验统计量观测值观测值的发生概率而间接得到的。的发生概率而间接得到的。n所设计的检验统计量一般服从或近似服从某种已知的理所设计的检验统计量一般服从或近似服从某种已知的理论分布(如论分布(

32、如t-分布、分布、F-分布、卡方分布),易于估算其分布、卡方分布),易于估算其取值概率。取值概率。n对于不同的假设检验和不同的总体,会有不同的选择检对于不同的假设检验和不同的总体,会有不同的选择检验统计量的理论和方法验统计量的理论和方法。奉豆雅姿湍驮倦拿眶颗删欧缮音心怖嘻检咳壤优歉测所薛扮权恤基惹弄寺生态学统计问题生态学统计问题假设检验的基本步骤n计算检验统计量观测值的发生概率计算检验统计量观测值的发生概率n在假定原假设成立的前提下,利用样本数据计算检验统计量观测值发生的概率(即p值,又称“相伴概率”指该检验统计量在某个特定的极端区域在原假设成立时的概率)。该概率值间接地给出了在原假设成立的条

33、件下样本值(或更极端值)发生的概率。既衅娩蛀骇母碳氟枉辨究袜等潘写须潭哲踊卢肠掠钦洱芜授缠坐爽骇芬锭生态学统计问题生态学统计问题假设检验的基本步骤n进行统计推断进行统计推断n依据预先确定的 “显著性水平” (即值),如0.01或0.05,决定是否拒绝原假设。n如果p值小于值,即认为原假设成立时检验统计量观测值的发生是小概率事件,则拒绝原假设。否则,就接受原假设。恒畔驹碧瞒式也匙河水懦完果臻芭照云或班纱瘸淡会迪编修选纽卒号腔哩生态学统计问题生态学统计问题显著性水平:概念与意义显著性水平:概念与意义n在假设检验中,在假设检验中,显著性水平(显著性水平(Significant level,用用表示)

34、的确定是假设检验中至关重要的问题。表示)的确定是假设检验中至关重要的问题。n显著性水平是在原假设成立时检验统计量的制落在显著性水平是在原假设成立时检验统计量的制落在某个极端区域的概率值。因此,如果取某个极端区域的概率值。因此,如果取= 0.05,如果计算出的如果计算出的p值小于值小于 ,则可认为原假设是一个不,则可认为原假设是一个不可能发生的小概率事件。当然,如果真的发生了,可能发生的小概率事件。当然,如果真的发生了,则犯错误的可能性为则犯错误的可能性为5%。显然,显著性水平反映显然,显著性水平反映了拒绝某一原假设时所犯错误的可能性,或者说,了拒绝某一原假设时所犯错误的可能性,或者说, 是指拒

35、绝了事实上正确的原假设的概率。是指拒绝了事实上正确的原假设的概率。砖浪远谱韵帕操脑阉土苹汪业庸婪壤桅挡秽请捶屠貌澳衡飘弄拟狙氢郊掇生态学统计问题生态学统计问题显著性水平:通常的取值显著性水平:通常的取值n值一般在进行假设检验前由研究者根据实际的需值一般在进行假设检验前由研究者根据实际的需要确定。要确定。n常用的取值是常用的取值是0.05或或0.01。对于前者,相当于在。对于前者,相当于在原假设事实上正确的情况下,研究者接受这一假原假设事实上正确的情况下,研究者接受这一假设的可能性为设的可能性为95%;对于后者,则研究者接受事;对于后者,则研究者接受事实上正确的原假设的可能性为实上正确的原假设的

36、可能性为99%。n显然,降低显然,降低值可以减少拒绝原假设的可能性。因值可以减少拒绝原假设的可能性。因此,在报告统计分析结果时,必须给出此,在报告统计分析结果时,必须给出值。值。 硬渠戮函淫箍牌类秆颁颂限扑虚臭骂畅录娶赠疗回也尔傣蔑簧秩盔窿眯昌生态学统计问题生态学统计问题显著性水平:进行统计推断显著性水平:进行统计推断n在进行假设检验时,各种统计软件均会给出在进行假设检验时,各种统计软件均会给出检验统检验统计量观测值计量观测值以及原假设成立时该检验统计量取值的以及原假设成立时该检验统计量取值的相伴概率相伴概率(即(即检验统计量检验统计量某特定取值及更极端可能某特定取值及更极端可能值出现的概率,

37、用值出现的概率,用p p表示)。表示)。np p值是否小于事先确定的值是否小于事先确定的值,是接受或拒绝原假设值,是接受或拒绝原假设的依据。的依据。n如果如果p p值小于事先已确定的值小于事先已确定的值,就意味着检验统计值,就意味着检验统计量取值的可能性很小,进而可推断原假设成立的可量取值的可能性很小,进而可推断原假设成立的可能性很小,因而可以拒绝原假设。相反,如果能性很小,因而可以拒绝原假设。相反,如果p p值大值大于事先已确定的于事先已确定的值,就不能拒绝原假设。值,就不能拒绝原假设。 闷故宅渤铅换反厦或什扣胚矗余器柳浇刺帚褒鸭苟碘共胆誊洋球抑谨钙蛇生态学统计问题生态学统计问题统计推断:过

38、去的回忆统计推断:过去的回忆n在计算机技术十分发达,以及专业统计软件功能十分强大的今天,计算在计算机技术十分发达,以及专业统计软件功能十分强大的今天,计算检验统计量及其相伴概率是一件十分容易的事情。检验统计量及其相伴概率是一件十分容易的事情。n然而,在然而,在20世纪世纪90年代以前,只有服从标准正态分布的检验统计量,年代以前,只有服从标准正态分布的检验统计量,人们可以直接查阅事先准备好的人们可以直接查阅事先准备好的标准正态分布函数表标准正态分布函数表,从中获得特定计,从中获得特定计算结果的相伴概率。而对于的服从算结果的相伴概率。而对于的服从t-分布、分布、F-分布、卡方分布或其它特分布、卡方

39、分布或其它特殊的理论分布的检验统计量(大多数的假设检验是这样),人们无法直殊的理论分布的检验统计量(大多数的假设检验是这样),人们无法直接计算相伴概率。人们通常查阅各类假设检验的临界值表进行统计推断。接计算相伴概率。人们通常查阅各类假设检验的临界值表进行统计推断。这些表格以自由度和很少的几个相伴概率(通常为这些表格以自由度和很少的几个相伴概率(通常为0.1、0.05和和0.01)为自变量,以检验统计量的临界值为函数排列。为自变量,以检验统计量的临界值为函数排列。n在进行统计推断时,人们使用上述临界值表根据事先确定的显著性水平,在进行统计推断时,人们使用上述临界值表根据事先确定的显著性水平,查阅

40、对应于某一自由度和特定相伴概率的检验统计量的临界值,然后将查阅对应于某一自由度和特定相伴概率的检验统计量的临界值,然后将所计算出的检验统计量与该临界值相比较。如果检验统计量的计算值大所计算出的检验统计量与该临界值相比较。如果检验统计量的计算值大于临界值,即实际的相伴概率小于事先规定的显著性水平,便可拒绝原于临界值,即实际的相伴概率小于事先规定的显著性水平,便可拒绝原假设。否则,可接受原假设。假设。否则,可接受原假设。千猖搂汀烽纯射厌谩运樱刹列披埔冻截据唬悯员局沏驼善享摹性荔披烹拎生态学统计问题生态学统计问题显著性水平:举例显著性水平:举例n在根据显著性水平进行统计推断时,应注意原假设的性质。在

41、根据显著性水平进行统计推断时,应注意原假设的性质。n以二元相关分析为例,相关分析中的原假设是以二元相关分析为例,相关分析中的原假设是“相关系数为相关系数为零零”(即(即2个随机变量间不存在显著的相关关系)。如果计个随机变量间不存在显著的相关关系)。如果计算出的检验统计量的相伴概率(算出的检验统计量的相伴概率(p值)低于事先给定值)低于事先给定值值(如(如0.05),就可以认为),就可以认为“相关系数为零相关系数为零”的可能性很低,的可能性很低, 既既2个随机变量之间存在显著的相关关系。个随机变量之间存在显著的相关关系。n在正态分布检验时,原假设是在正态分布检验时,原假设是“样本数据来自服从正态

42、分布样本数据来自服从正态分布的总体的总体”。此时,如果计算出的检验统计量的相伴概率(。此时,如果计算出的检验统计量的相伴概率(p值)低于事先给定值)低于事先给定值(如值(如0.05),则表明数据不服从正态),则表明数据不服从正态分布。只有分布。只有p值高于值高于值时,数据才服从正态分布。值时,数据才服从正态分布。这与相这与相关分析的假设检验不同。关分析的假设检验不同。嚷阵晨雷裔惊拷湃香畔疙程潭桥开紊首汝蚊愁尸席南弥宾笛噎岭何厄蹋歌生态学统计问题生态学统计问题显著性水平显著性水平n作者在描述相关分析结果时常有的失误是:仅给出相关系数作者在描述相关分析结果时常有的失误是:仅给出相关系数的值,而不给

43、出显著性水平。这就无法判断的值,而不给出显著性水平。这就无法判断2个随机变量间个随机变量间的相关性是否显著。的相关性是否显著。n有时作者不是根据显著性水平判断相关关系是否显著,而是有时作者不是根据显著性水平判断相关关系是否显著,而是根据相关系数的大小来推断(相关系数越近根据相关系数的大小来推断(相关系数越近1,则相关关系,则相关关系越显著)。问题是,相关系数本身是一个基于样本数据计算越显著)。问题是,相关系数本身是一个基于样本数据计算出的观测值,其本身的可靠性尚需检验。出的观测值,其本身的可靠性尚需检验。n此外,作者在论文中常常用此外,作者在论文中常常用“显著相关显著相关”和和“极显著相关极显

44、著相关”来描述相关分析结果,即认为来描述相关分析结果,即认为p值小于值小于0.05就是显著相关关就是显著相关关系(或显著相关),小于系(或显著相关),小于0.01就是极显著相关关系(或极就是极显著相关关系(或极显著相关)。显著相关)。 曾领绥嗜茹雪冰盏停酵指朴淀暮范齿裕关测医广影悸尉批碘隋相觉鼠蛊概生态学统计问题生态学统计问题统计推断的注意事项统计推断的注意事项n在假设检验中,只有在假设检验中,只有 “显著显著”和和 “不显著不显著”,没,没有有“极显著极显著”这样的断语。只要计算出的检验统这样的断语。只要计算出的检验统计量的相伴概率(计量的相伴概率(p值)低于事先确定的值)低于事先确定的值,

45、就值,就可以认为检验结果可以认为检验结果“显著显著”(相关分析的原假设(相关分析的原假设是是“相关系数为零相关系数为零”,故此处的,故此处的“显著显著”实际意实际意味着味着“相关系数不为零相关系数不为零”,或说,或说“2个随机变量间个随机变量间有显著的相关关系有显著的相关关系”);同样,只要计算出的检);同样,只要计算出的检验统计量的相伴概率(验统计量的相伴概率(p值)高于事先确定的值)高于事先确定的值,值,就可以认为检验结果就可以认为检验结果“不显著不显著”。 炔盯塘顶钉垢酒归渤谈城殖乖赴剥拆眯片锋浅熄呸糜近述校它淮裹习待隘生态学统计问题生态学统计问题统计推断的注意事项统计推断的注意事项n在

46、进行相关分析时,不能同时使用在进行相关分析时,不能同时使用0.05和和0.01这这2个显著性水平来决定是否拒个显著性水平来决定是否拒绝原假设,只能使用其中的绝原假设,只能使用其中的1个。个。 峙勿血蔷纫立医蒜父毛伐堆嘎拥稚稠材霜挝抵夹蜡暮进酣阵闽昨狗晌该颈生态学统计问题生态学统计问题有关相关分析的断语有关相关分析的断语n1)显著和不显著:描述相关关系是否存在。n2)相关性强或不强:在存在相关关系的前提下,这种相关关系的强或弱。可以认为,相关系数越接近1,则相关性越强。n声明:第声明:第1 1)条是公认的数理统计常识,但第)条是公认的数理统计常识,但第2 2)条是个人理)条是个人理解,仅供参考。

47、本文不对第解,仅供参考。本文不对第2 2)条承担责任。)条承担责任。秋拍极缺晒袒羚豹眠划珐胚铺蒲臀珠唤坠西原郴杀纹现锡茎磋何简叙篇怜生态学统计问题生态学统计问题5 重要的数理统计学常识n1)假设检验n统计推断:单侧检验与双侧检验n对于假设检验,其检验统计量的异常取值有2个方向,即概率分布曲线的左侧(对应于过小的值)和右侧(对应于过大的值)。洗戌丈鼎挝憨怂倦狮嗓赵在户禁诀谤桥乓蹈迷行框窜鸭邢讨怔付怀买巢孙生态学统计问题生态学统计问题检验统计量的极端取值n检验统计量在左侧和右侧均有可能取值检验统计量的取值空间基篆伍街委馋侣影漱舞戴视毕瞩处驱彝宇肋淆呻基搪胞洲氛竭蹦凰澈惺骡生态学统计问题生态学统计问

48、题单侧检验与双侧检验n一般情况下,概率分布函数曲线两侧尾端的小概率事件都要考虑(即一般情况下,概率分布函数曲线两侧尾端的小概率事件都要考虑(即双侧检验)。如果事先有把握确定其中的一侧不可能取值,则仅需对双侧检验)。如果事先有把握确定其中的一侧不可能取值,则仅需对另一侧的小概率事件进行检验即可(单侧检验)。另一侧的小概率事件进行检验即可(单侧检验)。n在用在用 “ “查表法查表法”进行统计推断时,基于单侧小概率事件检验的临界值进行统计推断时,基于单侧小概率事件检验的临界值表称表称“单尾表单尾表”,基于双侧小概率事件检验的临界值表称,基于双侧小概率事件检验的临界值表称“双尾表双尾表”。除除t-t-

49、分布临界值表是双尾表外,大多数的检验临界值表均为单尾表分布临界值表是双尾表外,大多数的检验临界值表均为单尾表。n在显著性水平一定的情况下(例如在显著性水平一定的情况下(例如 =0.05 =0.05),对于单尾表,单侧检),对于单尾表,单侧检验时仍使用验时仍使用进行统计推断,双侧检验则用进行统计推断,双侧检验则用 /2 /2进行统计推断;对于进行统计推断;对于双尾表,单侧检验时改用双尾表,单侧检验时改用2 2进行统计推断,双侧检验则用进行统计推断,双侧检验则用 进行统进行统计推断。计推断。n在统计软件(如在统计软件(如SPSS或或SAS统计软件)给出的计算结果中,已标注出统计软件)给出的计算结果

50、中,已标注出所计算的相伴概率是单侧还是双侧,对应于上述的单尾表和双尾表。所计算的相伴概率是单侧还是双侧,对应于上述的单尾表和双尾表。泅驻静浪模柒狮涉锡桨堂死雾盖醚精歪州蹄甘奥恍卢永红冈潞侄罐河铸筑生态学统计问题生态学统计问题单侧检验与双侧检验n以下是以下是SPSS 中的单样本中的单样本t检验输出结果:检验输出结果:nOne-Sample Test(原假设:储户1次平均存取的现金与2000元无显著差异)nTest Value=2000(均值比较的参比值)nt=1.240(检验统计量的观测值)ndf=312(自由度,样本量N=313)nSig.(2-tailed)=0.216(双侧相伴概率p )n

51、Mean Difference=473.78(均值的标准误差)n95% Confidence Interval of the Difference(总体均值与原假设值之差的95%的置信区间):-278.131225.69(有95%的把握可认为:储户1次平均存取的金额为1721.873225.69元)n上述检验属 “均值比较”,是双侧检验(大于或小于2000元都算拒绝原假设),计算的相伴概率也是双侧的。因此,可直接用p与比较。取=0.05,则因p大于,故不能拒绝原假设(不是小概率事件)。统计推断结果:根据313个储户调查数据,每个储户一次平均存取金额大体为2000元。噬贮待饱熙睹脖肄阵多柬释玩捆

52、锣芒考癣恩购席险醋鼎腺权鸦损挝姑泣泉生态学统计问题生态学统计问题单侧检验与双侧检验n在统计软件中,可通过选择Test of Significance选项来控制所输出的相伴概率是单尾(1 tailed)概率还是双尾(2 tailed )概率。蜡族今谩属园豹警屏吼财藩取贯蓑遂凄蝶绕网促六恳羞川隙髓保煮犊软疥生态学统计问题生态学统计问题5 重要的数理统计学常识n2)正态分布检验n目的:检验样本是否来自正态分布的总体n原假设:样本来自正态分布的总体n分布检验只能使用非参数方法(只有分布形式已知时才能使用参数方法)。n不同的统计软件给出了不同的检验方法。驴媒灶是醛股鼎霓攻扼甘宗毒锅馅论兄筷涤魁呀逐剃扯隧

53、桑表趣拣地卿叁生态学统计问题生态学统计问题正态分布检验n在SAS中,提供了Shapiro-Wilk(适用于样本量小于50的情形)检验法。此检验无单尾、双尾之分。n在SPSS中提供了卡方检验(Chi-Square Test)和单样本的 Kolmogorov-Smirnov(柯尔莫哥洛夫-斯米尔诺夫,简称K-S)检验。后者比前者精确一些,建议采用。藩嚷智票壤吞址台缸曝餐措涩揍骨浇惠位运蹄袍嚷弊插定矗瑰啼组甜李沾生态学统计问题生态学统计问题正态分布检验n单样本的 Kolmogorov-Smirnov(柯尔莫哥洛夫-斯米尔诺夫,简称K-S)检验属于双侧检验,计算检验统计量(Z)的双尾概率。吧房檬剁因菜

54、溢围补漂唤灿预华婉汇势劫挎恒悦赌屎腋陛习弘糟据渴锭阿生态学统计问题生态学统计问题5 重要的数理统计学常识n3)均值比较na)将样本均值与某一特定值相比:t-检验(参数检验)n原假设:总体均值与特定值无显著差异n前提:样本来自正态分布的总体n双侧检验:是否等于。n单侧检验:已知不可能大于(或不可能小于),检验是否等于。nb)比较2个独立样本均值: t-检验(参数检验)n原假设:2个样本所代表的2个总体的均值无显著差异n用于对2个来自正态分布总体的样本的大小进行比较,且2个样本相互独立(无相关关系)。n改检验有单侧和双侧之分。融蓉叔拟时宾炉耘耿裹浊渠章录漓阔它斧断汽圾抉毋票甄街棉安摆删旱获生态学统

55、计问题生态学统计问题5 重要的数理统计学常识n3)均值比较nC) 比较2个独立总体大小的非参数检验n适用于对2个顺序变量的大小进行比较或对2个不服从正态分布的数值变量的大小进行比较n“Mann-Whitney U” 检验:适合样本量较大的样本。n “Wilcoxon秩和”检验:与“Mann-Whitney U” 检验在本质上完全等价。nKolmogorov单侧检验:适用于样本量较小的样本。硒剐侦哥潞甩插狗匣具嘛桑证痴腋栓尚仇娄宫刨创做椿科凝衍励淮捧剔映生态学统计问题生态学统计问题5 重要的数理统计学常识n3)均值比较nd)比较多个来自正态分布总体的样本均值的检验方法:单因子方差分析(singl

56、e-factor anova)。n对于将因子作为固定处理(而不是随机变量)的情形,即模型1单因子方差分析,实际上可以看作比较2个总体均值的t-检验的直接推广。该方法属于参数检验。n有关假定:多个样本相互独立、样本均服从正态分布、方差同质性(各个样本的方差大小没有显著差异)等。n原假设:各样本的均值间无显著差异,即某影响因子的不同取值(等级)对各样本的大小没有影响。锹咸堪士膀棍碘肄筏博铂麦密圭届起井暇闷洋资杜毗七捂含傍仗怎骤征撞生态学统计问题生态学统计问题5 重要的数理统计学常识n3)均值比较nd)比较多个来自非正态分布总体的样本均值的检验方法:nKruskal-Wallis检验:该方法基于顺序

57、变量设计,用于检验3个以上独立样本是否来自大小相同的总体,是应用最广泛的非参数检验方法。n推广的中位数检验:用于检验3个以上的独立样本是否来自中位数无显著差异的样本。该方法检验功效低,不推荐采用。原假设:各独立样本所代表的总体的中位数无显著差异。nFriedman秩方差分析:用于检验3个以上相关样本是否来自大小相同的总体。计啤栽蛾繁蹿枝较持字派讶咐镭括咋铭钞勒蔚俏燥欣灭仆寺漳鼠漂兄抵精生态学统计问题生态学统计问题案例1n2.4 Cd、Pb之间的交互作用之间的交互作用n如表如表4所示,三种花卉植物各部位对重金属所示,三种花卉植物各部位对重金属Cd、Pb的积累量与培养溶液的积累量与培养溶液中所投加

58、的中所投加的Cd、Pb量之间,可以很恰当地被各量之间,可以很恰当地被各多元回归方程多元回归方程表示出来,表示出来,它们之间呈它们之间呈极显著相关关系极显著相关关系(P0.05p0.05); ;n有相关性,显著(有相关性,显著(0.05p0.010.05p0.01); ;n有相关性,极显著(有相关性,极显著(p0.01p0.200)、珠江口()、珠江口(p0.091)和澳门水域)和澳门水域(p0.110)呈正态分布()呈正态分布(=0.05).因此对珠江、珠江口和澳因此对珠江、珠江口和澳门水域进行门水域进行Pearson相关分析,对东江、西江和南海北部海域进行相关分析,对东江、西江和南海北部海域

59、进行Kendall相关分析相关分析.从表从表2可以看出,除澳门水域外其它研究区域,可以看出,除澳门水域外其它研究区域,BDE209与与PBDEs相关性不显著(相关性不显著(r0.047),这是这是由于由于BDE209与其它与其它PBDEs同系物分别来自不同的溴代阻燃剂;同系物分别来自不同的溴代阻燃剂;但澳门水域沉积物中的但澳门水域沉积物中的BDE209与与PBDEs相关性显著(相关性显著(r=0.955,p=0)(图)(图5),表明澳门水域),表明澳门水域BDE209和其它其它和其它其它PBDEs同系同系物具有相同的输入途径,正如上述,它们主要都是通过水体中颗粒物具有相同的输入途径,正如上述,

60、它们主要都是通过水体中颗粒物输入的,它们之间较高的相关性是物输入的,它们之间较高的相关性是PBDEs在水体颗粒物中再分在水体颗粒物中再分配的结果,这也证实了澳门水域是珠三角水体环境中配的结果,这也证实了澳门水域是珠三角水体环境中PBDEs的的“汇汇”. 搔欺随犹累轰厨口命哼膳拴抄帐颖横腑俘柬咳替奔倪馅遍友途辗就旁惺堑生态学统计问题生态学统计问题案例3图2b表明,1/qN对1/D有很好的线性关系,相关系数R=0.9922(R2=0.9845)。 阶名颓监穷蒸狡迫娇开昏睁氟蕊火然俄争俄逸碌征骏狱蝇肺蔽肇韶侮咸垮生态学统计问题生态学统计问题案例4nHA对有机农药甲基对硫磷、西维因、克百威的吸附等温线

61、见图3,用线性吸附方程拟合甲基对硫磷、西维因和克百威的吸附等温线,拟合结果见表3。线性吸附方程为:n Q = KdCe + A (1)n式中Q为吸附量(mg/kg);Ce为平衡浓度(mg/l);Kd为线性吸附平衡常数,A为线性方程待定常数。用HA总有机碳标化有机农药的吸附系数Kd得有机碳标化吸附系数Koc,有机农药在HA上的Koc值见表3。由图3、表3可知,甲基对硫磷、西维因和克百威在HA上的吸附等温线较好的符合线性吸附方程,相关系数在0.87480.9940之间,但是克百威的相关系数要小于甲基对硫磷和西维因;从整体上看有机农药在HA上的Kd大小顺序为:水解处理HA原始HA肟化处理HA氧化处理

62、HA。 皋陀淋褂络扫孝怒草瞻森惯勇钾暴选写啼悸暮疫奔荫羡曹摊亩敞困施睫寐生态学统计问题生态学统计问题案例6在下表中,作者将回归方程的可决系数误称为“相关系数”。艇猩浦廊竞敲受省神拽占敞税躇僳喂袄打颊俞俯厚内菩拔曹气问揍颓挛丸生态学统计问题生态学统计问题案例7n早期的研究表明有机污染物通过分配作用吸附到土壤/沉积物有机质上,其吸附量与有机碳含量和有机污染物的辛醇-水分配系数成正比3。从甲基对硫磷、西维因和克百威分配系数Kd与改性HA有机碳含量的关系可知(见图4), Kd与HA的有机碳含量成正比,但相关性不高分别为:0.7429、0.8870和0.6900,这表明有机农药在HA上的吸附行为不是由H

63、A的有机碳含量唯一确定,还受到其他因素的影响。图5为有机农药在处理前后HA上n的有机碳标化吸附系数Koc对数(lgKoc)与三种有机农药辛醇-水分配系数Kow对数(lgKow)之间的关系曲线,lgKoc与lgKow呈现较好的线性关系,相关系数分别为:0.8573、0.8367、0.8420和0.9408,可见用辛醇-水分配系数来预测有机污染物在土壤/沉积物上的吸附具有一定的合理性3。 咱嘿检秀脆稽锄孝轻牌库秘篡几躺盏多糠劝几小别斋咨很妮旦状颠冕谜扳生态学统计问题生态学统计问题案例8图6 Kd与腐殖酸O元素含量和H/C比的相关性Fig 6 Correlation of Kd and O cont

64、ent and H/C rate of the humic acids 目究年抬志绎狈迁荣源片帅凄幼形稿狙讲沟椎淆矢缠犁缔象埔放杉勿荧合生态学统计问题生态学统计问题案例9图4为取每天19:00的DO值与叶绿素值做的趋势图,通过分析它们数据得出它们的相关性为0.8899,在一定程度上能反映藻类的变化趋势。可以作为藻类增长趋势的预报指标。 抄醚悠哑柔磷率拜涵涟肆讹贱霹卢竭捅儿卖宴衅后迟詹滑氰栓翔州氟阳障生态学统计问题生态学统计问题案例10n作图得到一条直线见图6,二级动力学速率方程可很好的描述Cu2、Cd2在生物膜上的吸附(RCu=0.9989,RCd0.9978)。 捐一户访会郊辰弯奥柿胖宗科阻

65、缩曾妈睦无缘盏漫托兽酝瘴关株洗贼衬势生态学统计问题生态学统计问题案例11简希巫放僚膛旷瘫茬瑰夷勃沈儒酗施重媒疫卞谚吉庭猪沽砖敷区厢旷痔勤生态学统计问题生态学统计问题案例11(续)n 由表由表1 1可知可知,0,05cm5cm土壤层中土壤层中, ,活动区土壤微生物生物量碳和缓活动区土壤微生物生物量碳和缓冲区土壤微生物生物量碳分别比背景区土壤微生物生物量碳冲区土壤微生物生物量碳分别比背景区土壤微生物生物量碳降低了降低了65.96%65.96%和和20.05%20.05%,而活动区土壤微生物生物量碳比缓,而活动区土壤微生物生物量碳比缓冲区土壤微生物生物量碳降低了冲区土壤微生物生物量碳降低了57.42

66、%57.42%,并且并且3 3个试验区的差个试验区的差异均达到显著水平(异均达到显著水平(P0.05P0.05). 5. 515cm15cm土壤层中土壤层中, ,活动区土活动区土壤微生物生物量碳比缓冲区土壤微生物生物量碳降低了壤微生物生物量碳比缓冲区土壤微生物生物量碳降低了43.14%43.14%,而缓冲区土壤微生物生物量碳比背景区土壤微生物,而缓冲区土壤微生物生物量碳比背景区土壤微生物生物量碳降低了生物量碳降低了13.85%13.85%,3 3个试验区的差异也均达到显著水平个试验区的差异也均达到显著水平(P0.05P0.05). 15. 1525cm25cm土壤层中土壤层中, ,活动区土壤微

67、生物生物量碳活动区土壤微生物生物量碳比缓冲区土壤微生物生物量碳降低了比缓冲区土壤微生物生物量碳降低了18.58%18.58%,而缓冲区土壤,而缓冲区土壤微生物生物量碳只比背景区土壤微生物生物量碳降低了微生物生物量碳只比背景区土壤微生物生物量碳降低了11.06%11.06%,但,但3 3个试验区的差异均达到显著水平(个试验区的差异均达到显著水平(P0.05P0.05). . 疼漓榔计萄营颤举与锰抑冤罢谋画蚊封粳砂鲤必窟姿翌缄氨撰委炭橡盈簇生态学统计问题生态学统计问题案例11(续)n由表由表2可知,在可知,在05cm土壤层和土壤层和515cm土土壤层壤层,旅游踩踏对土壤微生物生物量氮的影响旅游踩踏

68、对土壤微生物生物量氮的影响与对土壤微生物生物量碳的影响是相似的与对土壤微生物生物量碳的影响是相似的.但但在在1525cm土壤层,活动区土壤微生物生物土壤层,活动区土壤微生物生物量氮比背景区土壤微生物生物量氮低,并且达量氮比背景区土壤微生物生物量氮低,并且达到显著水平(到显著水平(P0.05);缓冲区土壤微生物);缓冲区土壤微生物生物量氮与活动区土壤微生物生物量氮的差异生物量氮与活动区土壤微生物生物量氮的差异也达到显著水平(也达到显著水平(P0.05) .我悦欠皱枯梁犯骋酸研底咖盏澜恐煮玛犹菩供泻狭讼痔构党稼虏碉聊修卷生态学统计问题生态学统计问题案例12n2.10 相关性分析n所有相关数据分析,

69、通过SPSS10.0软件分析完成,采用t测验法检验相关系数的显著性。 苏锨杰植妈笋悉渴蝴倡黎邱笺兼仇喊札尸陶簇见陀在阔笼凋欠亏佐耻嫉篡生态学统计问题生态学统计问题案例12(续)表2:喷洒菌株与TSNA与硝酸盐、亚硝酸盐的相关性及显著性分析Table2: The correlation and significant analysis of spraying WB5 with nitrate, nitrite 注:*极显著 *显著 靡针竞外严刑堡浙即哗唐青晴甸峦酣勋逼僳桶谷癌柳御茁将眨元展粉迭鼓生态学统计问题生态学统计问题案例12(续)n从表从表2可知,晾制期间烟叶中可知,晾制期间烟叶中WB5的

70、菌量与硝的菌量与硝酸盐含量几乎没有相关性,而与亚硝酸盐、酸盐含量几乎没有相关性,而与亚硝酸盐、NNN和总和总TSNA都存在着都存在着显著的负相关性显著的负相关性,与,与NAT+NAB存在存在极显著的负相关性极显著的负相关性,而与,而与NNK的的负相关性则不显著负相关性则不显著。结果表明,喷洒。结果表明,喷洒WB5菌菌株可以明显降低烟叶中的株可以明显降低烟叶中的TSNA含量,对烟草含量,对烟草的安全性来说,最主要是降低用于卷烟烟叶中的安全性来说,最主要是降低用于卷烟烟叶中的有害物质,因此,该菌株对提高烟草安全性的有害物质,因此,该菌株对提高烟草安全性有积极的意义。有积极的意义。 稿撒仔编卢鸭肯灌

71、页为弹俄根虑莲焙份毅键仗竭伸汾淌把矽腑恭旗胎驰孤生态学统计问题生态学统计问题案例12(续)n从表3可知,亚硝酸盐与硝酸盐存在一定的相关性,相关系数为0.4875,但不显著。而各种TSNA及其总量与亚硝酸盐都存在着显著的相关性,尤其是与NNN、NAT+NAB和TSNA之间有极显著的相关性。TSNA总量与NNN、NAT+NAB和NNK都具有极显著相关性,但与NNK的相关性稍低。而NNK与NNN、NAT+NAB也存在着显著的相关性,NNN与NAT+NAB之间的相关性极为显著。 持崇梢爵菇瓮牧哨耿亏惊钵离敌乎夸兰疼柠邢刁缩捐频订笑咕剥盲金狂嚷生态学统计问题生态学统计问题案例13栅驳散澈铬贤辣塑各奖晨锚

72、诲赐鳃椿豪掷塘钳籽芽庞强姐赏纳毁批睁盂使生态学统计问题生态学统计问题案例14衔抚嘎镇讲芬掳歧奠钓架晤裁乡类好迂钮夹待翔道虹蹬坎惟苗瞻棠帮潜罗生态学统计问题生态学统计问题案例15枕婶尚淋睡嫡蒙墙蛊痉园耶拭靳没蕾纪郎捶误维懒饶始秀潜械丸障构肺灯生态学统计问题生态学统计问题案例16鸵孩爱贰晌秒我暮踏店硕烯娃泌跋撕住签摧晦呢爬旺扒做飘矫桃桶宦首桩生态学统计问题生态学统计问题案例:稿件20061113002初稿n2.1 苦草现存量增加百分比的变化n由图1可知,在Hg2+、Cd2+和Hg2+Cd2+三种胁迫下,苦草的现存量增加百分比均随着金属离子浓度的增加而下降,其中在Hg2+或Hg2+Cd2+ 5 mo

73、l/L时急剧下降,即快速致死,而在Cd2+ 胁迫下,现存量增加百分比随胁迫程度的增加呈逐步下降趋势,说明Hg2+和Hg2+Cd2+复合对苦草的毒性远大于Cd2+。经相关分析,苦草现存量增加百分比与金属离子浓度间显著负相关,其决定系数R2分别为0.893,0.87,0.886,P0.05。 般恳叶嫡熔予烯戍驶动省炭蕴烙堡彦兼减粗忆销脐局蔫盖久翻健爪绕胸胖生态学统计问题生态学统计问题稿件20061113002初稿(续)n2.2 对苦草光合与呼吸作用的影响n苦草的Pg、Pn、R是随着金属离子浓度的增加而下降(图2)。Pg、Pn与金属离子浓度间在Cd2+、以及Hg2+Cd2+复合胁迫时呈明显负相关,其

74、决定系数R2的范围是0.7440.876(P0.05)。R与金属离子浓度间只有复合胁迫时明显负相关,其决定系数R2=0.726(P0.05)。 席力翔歇浪俱六至洲价送挪澜鸳痔映窿撞凳咨枪斟诬匹澈涟乎泳裙赏溢碟生态学统计问题生态学统计问题n2.3 对苦草叶绿素含量的影响n3种处理均导致叶绿素含量随着时间的延长和金属离子浓度的增加而降低,但略有波动(图3)。在低浓度胁迫时(2.5 mol/L,下同)叶绿素含量升高(Hg2+处理72h时降低),之后较明显地降低;叶绿素含量与金属离子的浓度除Hg2+、Cd2+单一胁迫6h时外,其他明显负相关;其决定系数R2的范围是0.6690.850(P0.05)。

75、瓢核臻秆黍鼻撵狸婉邹辨找瘁求闲秋待汾惊纯谗们彝响羊汀纤枕规焦妨贪生态学统计问题生态学统计问题n2.4对苦草可溶性蛋白浓度的影响n总体上看,3种处理均导致苦草可溶性蛋白含量随着时间的延长和金属离子浓度的增加而明显降低,但略有波动(图4)。在单一Hg2+和复合处理时,可溶性蛋白含量在低浓度胁迫时,基本保持稳定或略有升高,之后,除单一Hg2+处理6h时蛋白质含量随金属离子浓度增加而缓慢下降外,其他均随着时间的延长和金属离子浓度的增加而较大幅度下降;在单一Cd2+处理时,可溶性蛋白含量在10 mol/L浓度时稳定或升高,之后相对较缓慢地降低。经回归分析,蛋白质含量与金属离子的浓度在Hg2+胁迫24h、

76、Cd2+胁迫72h、以及复合胁迫24h和72h时呈明显负相关;其决定系数R2的范围是0.6840.763(P0.05)。 淮挥伸凛娃色寡受雨兵县侧猜口勿典防缔犯伐哩含许倾蹭厩茧酷第煤理吁生态学统计问题生态学统计问题n2.5对苦草POD活性的影响n由图5可知,在Hg2+和Hg2+Cd2+复合胁迫时,6h时POD活性稳定或随金属离子浓度的增加而缓慢上升,24h时先明显升高,在Hg2+=10 mol/L、Hg2+Cd2+=20 mol/L时达最高,之后下降,72h时金属离子浓度在5 mol/L前明显上升,之后下降至最低。两者间的变化趋势相似,即随着胁迫浓度和时间的增加,POD的活性逐步增大,超过一定

77、限度后,开始降低。而在Cd2+单一胁迫下,POD活性除在最高浓度和最长时间胁迫(即最大胁迫)下略有降低外,均随胁迫强度的增加而增加。经相关分析,在Hg2+胁迫72h时,POD活性与金属离子浓度间显著负相关(决定系数R20.773,P0.05),在Cd2+胁迫6和24h,Hg2+Cd2+复合胁迫6h时,POD活性与金属离子浓度间显著正相关,决定系数R2分别为0.989,0.994(P0.01)和0.774(P0.05)。 镊增竣凛驱免靳腋线扭缅榔帐闹霄溶妨酋舆鸡哄锌尖敬味苗厚狸囊助捏裔生态学统计问题生态学统计问题n2.6对苦草SOD活性的影响n由图6可知,SOD活性与POD活性的变化趋势基本一致

78、,但在40 mol/L 的Hg2+和Hg2+Cd2+复合胁迫6h时,SOD活性是降低的。经相关分析,在Cd2+胁迫6和24h时,SOD活性与金属离子浓度间显著正相关(决定系数R2分别为0.899,0.86,P0.01)。 抉谬晋精轿午渊掣辰姓硫纠枕棵堂破椰质访异颐狸赤沂龄掖步合寞惨渠例生态学统计问题生态学统计问题预审修改意见n稿件编号:20061113002n初审结果:修改后送审n修改意见:n5)第2.1节“经相关分析,现存量增加百分比与金属离子浓度间显著负相关,其决定系数R2(2是上角标)分别为0.893,0.87,0.886,P5 molL1时急剧下降,即快速致死,而在Cd2+胁迫下,现存

79、量增加百分比随胁迫程度的增加呈逐步下降趋势,说明Hg2+和Hg2+Cd2+复合对苦草的毒性远大于Cd2+。经相关分析,现存量增加百分比与金属离子浓度间极显著负相关,其相关系数r分别为0.933,0.945,0.941(为显著,为极显著,下同)。 翅审篆翘戌订气码忽初媚戊咯性议牧摘掀沫戏舒迎蔚颧晨耳择零燥悯渐趣生态学统计问题生态学统计问题修改结果(续)n3.2 对苦草光合与呼吸作用的影响n苦草的Pg、Pn、R是随着金属离子浓度的增加而下降(图2)。三者与金属离子浓度间显著或极显著负相关,其相关系数r的范围是0.6000.966。 n3.3 对苦草叶绿素含量的影响n3种处理均导致叶绿素含量随着时间

80、的延长和金属离子浓度的增加而降低,但略有波动(图3)。在低浓度胁迫时(2.5 molL1,下同)叶绿素含量升高(Hg2+处理72h时降低),之后较明显地降低;叶绿素含量与金属离子的浓度除Hg2+胁迫6、24h和Cd2+胁迫6h外,其他显著或极显著负相关;其相关系数r的范围是0.690969。 鬼短郸划达圭嫩北骆乱侵哩施绵属在碉扎帛栅保学柔附辖临千赁卡啸勤枚生态学统计问题生态学统计问题修改结果(续)n3.4对苦草可溶性蛋白浓度的影响n总体上看,3种处理均导致苦草可溶性蛋白含量随着时间的延长和金属离子浓度的增加而明显降低,但略有波动(图4)。在单一Hg2+和复合处理时,可溶性蛋白含量在低浓度胁迫时

81、,基本保持稳定或略有升高,之后,除单一Hg2+处理6h时蛋白质含量随金属离子浓度增加而缓慢下降外,其他均随着时间的延长和金属离子浓度的增加而较大幅度下降;在单一Cd2+处理时,可溶性蛋白含量在10 molL1浓度时稳定或升高,之后相对较缓慢地降低。经相关分析,蛋白质含量与金属离子的浓度在Hg2+胁迫24、72h,复合胁迫6、24和72h时极显著负相关,相关系数r的范围是0.8670.969;Cd2+胁迫72h时显著负相关,r0.600。 折冗台淳腥弥吐曼颖伊戮唉扛屈爵律咆叠苍卿帆媳求寓阮肚彤污日和漠嘱生态学统计问题生态学统计问题修改结果(续)n3.5对苦草POD活性的影响n由图5可知,在Hg2

82、+和Hg2+Cd2+复合胁迫时,6h时POD活性稳定或随金属离子浓度的增加而缓慢上升,24h时先明显升高,在Hg2+=10 molL1、Hg2+Cd2+=20 molL1时达最高,之后下降,72h时金属离子浓度在5 molL1前明显上升,之后下降至最低。两者间的变化趋势相似,即随着胁迫浓度和时间的增加,POD的活性逐步增大,超过一定限度后,开始降低。而在Cd2+单一胁迫下,POD活性除在最高浓度和最长时间胁迫(即最大胁迫)下略有降低外,均随胁迫强度的增加而增加。经相关分析,在Cd2+胁迫6、24、72h,Hg2+Cd2+复合胁迫6h时,POD活性与金属离子浓度间显著或极显著正相关,相关系数r分

83、别为0.828,0.997,0.733,0.828。 芝碑竿岳钳读酿卵秸疽胎似醒啃韩袱遏赣验挟燥凶秩寸崇碟先拂拒尖称参生态学统计问题生态学统计问题修改结果(续)n3.6对苦草SOD活性的影响n由图6可知,SOD活性与POD活性的变化趋势基本一致,但在40 molL1的Hg2+和Hg2+Cd2+复合胁迫6h时,SOD活性是降低的。经相关分析,在Cd2+胁迫6、24、72h时,SOD活性与金属离子浓度间显著或极显著正相关,相关系数r分别为0.948、0.927、0.733。 窄粉声手未弱公疗儡姥坠烘袒返联惨慰娠刮串持分屑朔拂皇钟倪铀悦嗡摧生态学统计问题生态学统计问题再修意见n1)在第2.2节中,请

84、将“用Spss11.5软件进行相关分析,采用Kendall相关系数。”一句修改为“本研究中的相关分析用SPSS 11.5软件进行。经正态分布检验,因数据不服从正态分布,故相关分析时采用Kendall相关系数。”n2)文中将p0.05的情形(即在=0.05下显著)称为“显著”是可以的,但将p0.01的情形(即在=0.01下显著)称为“极显著”就不妥。数理统计中无“极显著”这样的说法(尽管一些统计软件教程中有这样的提法,但这样说不严瑾,也不规范)。因此,请全面修改第3章和结论一章中相应的提法,将断语统一改为“显著相关”,将括号内的注释改为“(表示在=0.05下显著,表示在=0.01下显著)”。 旦

85、傣仑恩藕燎侧郧蛆耙雄贫妖株奇扣猎铃蛾乌蚊遭唱谴判雾霖蜒鹏澄膳娟生态学统计问题生态学统计问题预审意见案例n稿件编号:20061121003n初审结果:修改后送审n修改意见:n8)第3.3节:作者实际进行的是回归分析而非相关分析。回归分析的结果并不能解释相关性问题。请作者全面修改本节正文及图、表中的相应提法。如果作者不能理解回归分析与相关分析的区别,请您登陆本刊网站查阅本刊编辑部发布的有关数理统计问题最新公告。类似“本试验在冬小麦-夏玉米轮作田也发现了类似现象去除施肥影响后土壤N2O通量和地温呈指数关系,并达到极显著水平(P0.001)(见图3a)”这样的提法欠妥(此后的行文中仍有此类错误)。对于

86、假设检验,显著性的断语只有“显著”和 “不显著”,没有 “极显著”这样的说法(决不是p小于0.05就是“显著”,p小于0.01就是“极显著”)。按照通常做法,在下“显著”或“不显著”结论的同时,还需注明显著性水平(通常取0.05或0.01)。表3中的“关系式”应为“回归方程”,可决系数(不是“相关系数”)R应写为R2(2为平方)。此外,表3的表下注“P0.001”应为“P0.01”。图3和第3.3.4节所列各回归方程中R也应修改为R2(2为平方)。 禹忠钩鬼肚嗡恬靛跨害种否眺泛碳置碍谢掸挚蝴剩心嗅温初导芯泉锌包大生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79n氮肥

87、施用对紫色土玉米根系系统N2O排放的影响n摘要:利用静态箱气相色谱法对不同施氮水平和氮肥品种处理的石灰性紫色土下玉米根系土壤系统的N2O排放变化进行了观测。结果表明,N2O排放通量在施肥及降雨后的短时间内都会出现峰值,土壤水分含量高且较长时间保持稳定不利于N2O的排放。不施肥条件下,土壤作物根系系统N2O的排放量为0.88 kghm-20.90 kghm-2;施用氮肥显著地增加了N2O排放,N2O的排放量为1.27 kghm-22.52 kghm-2。施氮量越高,N2O排放量也越高,中氮和高氮处理的排放量分别为2.19 kghm-2和2.52 kghm-2;N2O排放量分别占施氮量的0.87%

88、和0.66%。氮肥品种对N2O排放的影响也十分显著。尿素、硫酸铵和硝酸钾处理的排放量分别为2.09 kghm-2、1.80 kghm-2和1.27 kghm-2;铵态氮肥和硝态氮肥的N2O排放量分别占施氮量的0.60和0.26,显著或极显著地低于施用酰胺态氮肥(0.80)。此外,玉米根系也是N2O的主要排放源。n关键词:石灰性紫色土 土壤根系系统 N2O排放通量 施氮水平 氮肥品种燎磷别强哮稀园绷葱牧阀瑰夹胜很技议侨盏慎舞创庙克蔡感妈四躲河氛帛生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79n1.2 试验设计n氮肥施用水平试验设3个处理,分别为不施肥(CK :0 k

89、ghm-2);中等施氮(MN: 150 kghm-2);高氮(HN:250 kghm-2)。同时,在中氮处理区两行玉米间设置空白处理(MN-NP:不种玉米,施肥),施用氮肥为尿素。n氮肥品种试验设4个处理,以尿素酰胺态氮肥(UN,Urea)、硫酸铵铵态氮肥(AN,Ammonium Sulphate)及硝酸钾硝态氮肥(NN ,Potassium Nitrate)等作为氮肥供给来源,以不施氮肥作为对照(CK)。氮肥施用量为150 kghm-2。 n1.5 数据处理n试验结果中所有数据的处理和作图皆由EXCELL2003完成;统计分析则由SPSS软件完成。n上述表述中存在的问题:上述表述中存在的问题

90、:1) SPSS软件的版本号未说明;软件的版本号未说明;2)“统计分统计分析析”提法太笼统。究竟用的什么统计分析方法?应明确交代(本项研究提法太笼统。究竟用的什么统计分析方法?应明确交代(本项研究中,作者实际进行的是中,作者实际进行的是“方差分析方差分析”,但作者始终未交代)。,但作者始终未交代)。刃诞勤眶屹巧证瓜创蛛理血创悍肢痛他驱史宜部神斗拉麻例呛碗圣迸警砧生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79n2.1.2 N2O 排放差异n与不施氮肥相比较,中氮和高氮处理的排放通量在整个生育期内都比较高,在施肥或降雨后的短时间内这种现象更为明显。二者N2O平均排放通

91、量分别为71.3gm-2h-1和87.2 gm-2h-1,比不施肥处理增加了128和179;相应地,中氮处理和高氮处理的排放总量大大高于不施肥处理,排放总量(以N形式表示)分别为2.19kghm-2和2.52kghm-2(表2)。高氮处理与中氮处理的差异主要表现在苗期;高氮处理排放总量虽然略高于中氮处理,但二者间差异并不显著,表明施肥量超过一定水平后,N2O排放总量并不会随施氮量的增加而呈线性地增加。n不种玉米处理(MN-NP)在二次施肥后的排放通量都比施肥种玉米处理(MN)的排放通量要高很多(图2),在植株旺盛生长期(6月下旬到7月中旬间),MNNP处理的排放量一直都较MN处理高,但整个生育

92、期内MN处理排放总量比MN-NP处理的N2O排放量还要略高,且二者在平均排放通量和总排放量上并无明显差异(表2),表明玉米植株根系的存在增加了N2O的排放。遗汀粮畜叫泰俘振犀媳绥热胳价肺橱矿祖那舜钟嫂妻柔床欠胯搏暇宪粘笋生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79漓探桩灸林腐匆抑奋摹羽袍序安丧虹谊淑站他训许碰案链良肃终酣矛蛋湍生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79n2.2.2 N2O 排放差异n由图3可知,除个别峰值低于其他处理外,酰胺态氮肥处理的N2O排放通量都高于其他两种形态,而铵态氮肥处理除7月18日的排放高峰外,排放

93、通量都低于酰胺态氮处理;硝态氮肥处理在苗期前的排放量较高,但进入7月中旬后1个月内,其排放通量一直维持在较低的水平上,而这个时期内降雨频繁,土壤水分含量偏高,施入的硝态氮肥更有利于反硝化过程的进行,且有可能大部分转化为N2;另外,由于无铵态氮来源,土壤本身以硝化过程产生的N2O很少,这二者使得硝态氮肥处理的N2O排放通量较其他两种处理都低。处理间的排放总量差异达到显著或极显著水平(表2),以硝态氮或铵态氮形式作为氮肥供给来源时,N2O排放损失量分别占施肥量的0.26和0.60,极显著或显著地低于酰胺态氮肥所引起的0.80的损失量。 煌豢椰婶衷愤卞初溢蜕赛脖蝎抿姓羞檬魔柔揽钦疆木庞白号两尉垃逆设

94、才生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79脱坟浮槐救姚肾市蛆曳既贡蚀氏愤祟铭例跌浸花薄裸诵隆垛宇辰弧浴倦邹生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79n2.3环境因子与N2O排放的关系n土壤作物系统中N2O的排放受诸多因子的共同影响,如土壤水分、温度、无机氮含量和可溶性碳含量等。多数研究结果皆认为,在大田试验下,由于多种因子对N2O的排放起共同作用,单因子对N2O的排放影响不起决定作用。对充水孔隙率与N2O排放量之间进行简单的相关统计分析,结果表明二者间仅有微弱的正相关关系(图5)。不同施氮水平和氮肥品种处理下无机氮含量的变化

95、曲线与N2O排放曲线是比较一致的(图6a与图2;图6b与图4)。对无机氮含量与所有N2O排放测定结果之间的关系进行简单相关统计分析,结果表明无机氮含量与N2O排放量呈极显著的正相关关系,说明无机氮含量越高,N2O排放通量也就越高(图6c)。本区玉米生育期内,5cm处土壤平均温度为26.2,在2032范围内波动,有利于土壤N2O的产生;与土壤湿度、无机氮含量相比,温度不是主要影响因素。 停凄冕据闰盏慷帖寞北凝锗耀汰翱上沉荷怠伴尚常域豫畸么晤风呆吓椎山生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79n图5 N2O排放通量土壤充水孔隙率关系nFig.5 Relations

96、hip between N2O flux and WFPS故丹旨行岛毗怎息忿姚焉凸堆脊港锨谊仙腆楚迭蚕怀汛畴房孔码腆邮终谎生态学统计问题生态学统计问题编辑部预审修改稿稿件编号:06-04-20-79n图6c: N2O排放与无机氮含量关系矛喘疵豢岂择扛蛀爽度撂奔件甜综白擞氨蹭冲尿窝授捞憎勿矿尝愁蝎墒仅生态学统计问题生态学统计问题稿件编号:06-04-29-108n相关分析(表2)表明Al、Fe、Mg、Sc显著正相关,而K和Na显著正相关。LOI(燃烧重量损失 )与Fe、Mg、Sc显著正相关。相关分析进一步表明沉积物矿物组成不同而导致的元素背景方面的差异,因而采用同一背景含量值来评价整个河流沉积物

97、污染风险存在明显的弊端。 牙凤龟欲笆灾萄茹乒炸颖缝漫撤育肠篷死霖腑办邀盅贾斧排母斑的扛宿播生态学统计问题生态学统计问题稿件编号:06-04-29-108掘梆鸦糊彪博降样搜标菱偶眩乏更撩完醛锰枉言戒辐鉴氖票群冗煎办炒熄生态学统计问题生态学统计问题稿件编号:06-04-29-108n3.2 未污染沉积物中元素的含量和相关关系n在嫰江汇入松花江前的大庙渡口基本未受到人类活动的污染,在该地点沉积物中Sc同绝大部分元素(表生元素Mn, P, Ca除外)都存在显著的相关关系(图2),表明了这些元素共同的地球化学起源。我们假定这些共同起源的元素间的相关关系同样存在于松花江流域污染发生之前的沉积物。因此我们可

98、以利用这些方程计算松花江流域沉积物中元素的背景含量(污染发生之前的含量)。本文只列出ScHg的相关方程。 踞街辱恋潍蒸绢出坦盆亢翁幅舞六衍喂拘擎艰桌佬戒嘉瑟愁盛栓阵酷纵晤生态学统计问题生态学统计问题稿件编号:06-04-29-108图2. 松花江流域大庙渡口沉积物(0-28 cm 深度)中Hg浓度随Sc浓度的变化 唤穿仑近珠韦腋堤苫盗摇昼腔柒聚暇侵福嵌堡维阴管羔枉测迫只侥帽败壤生态学统计问题生态学统计问题稿件编号:06-01-20-71n3.2 重金属富集状况与相关分析 nn对温榆河沉积物不同深度的重金属含量及其相关化学性质的变化进行相关分析,其结果如表3所示。可以看出:Fe含量则与Zn、Cu

99、、Cr含量间均达P0.01的正相关显著性水平,而Fe与As、Cd、Ni间无明显相关性;Zn与所有金属元素间均呈显著正相关关系;Cu含量与除As、Ni外的其它金属元素含量间均呈显著正相关关系;Cd含量与除Fe以外的其它重金属元素含量间的相关性显著。pH值与金属元素(除Fe、As外)的含量间负相关关系均达P0.05以上的显著性水平。沉积物的有机质含量与重金属元素(除Fe外)含量间均达P0.05以上的显著正相关水平,这可能与有机质能与重金属产生吸附等化学作用有关。 咨录鲍悠憨擎掸您搀丈屁伟腮说宛碍挠噪拂瘦鞭撂逊痘以串吮析嘶拴赁饲生态学统计问题生态学统计问题稿件编号:06-01-20-71呈关躲委附亏

100、山矫掀奖腕量晓歹钢概祝科罢窗消耘橡号掷迹枷蚀蚌携闰辙生态学统计问题生态学统计问题稿件编号:20061122001场遮狰径槐筷枝砒弯蒸翰惩颈咯忘砌惫浑赃陇支苇呆葫倔馏栅况蕴虹殴媒生态学统计问题生态学统计问题稿件编号:20061122001任吴捂抱忽圆六咎蕴舔裴座夷沂楞你鞘嫩嫡盾衙娶创谬酬学炮硒苗哑迂试生态学统计问题生态学统计问题稿件编号:20061122001赖三羚济哗氨阐舆郁聚邮饵守蹬烷胃抬弱认评绿纤秦乙野凝工墅槽拣声裳生态学统计问题生态学统计问题稿件编号:20061122001介慢烬财舰度抒卡特闹洪斑擂腰枫桃泄搭呆敷椽识痈剂狗丹困褐戊氢旦观生态学统计问题生态学统计问题稿件编号:2006112

101、3001n2.2.1 不同功能区降尘重金属特征n由表2可见,不同功能区降尘的重金属全含量存在显著性差异(p0.05),Cu、Cd以工业区最高,Zn、Pb以商业交通区最高,居住区、清洁对照区则负荷相对较轻。以内梅罗污染指数PN计算各功能区的重金属污染强度:PN= (Pi均2)+ (Pi最大2/21/2 ,Pi=Ci/Cj, 式中Pi均和Pi最大分别是平均单项污染指数和最大单项污染指数;Ci为降尘实测值,Cj为广东省土壤元素背景值7。两地不同功能区降尘污染趋势一致,其综合污染指数由大到小为:工业区(包括电厂)、商业交通区、居住区、清洁对照区。 架扰钦诸儡掳搓习较往青寸霸簿枷廷樱苑慎吾患汝醛曼叭巨净避硼郡幂镊生态学统计问题生态学统计问题稿件编号:20061123001运哗以娜亭驶部调畅剪胆守缀屉配奋香盈忻赐峪钥如谴趟涨桔项厢醋唁樱生态学统计问题生态学统计问题谢 谢!n欢迎批评、指正!n报告人:张利田n010-62941073将斤懈昼守弧疏嫉页酥帮菌皿堰泵寓店岭馅戏宰梧玩刁华卢汇谎文靳兰碳生态学统计问题生态学统计问题

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号