《静态场及其边值问题的解》由会员分享,可在线阅读,更多相关《静态场及其边值问题的解(43页珍藏版)》请在金锄头文库上搜索。
1、第二章第二章 内容回顾内容回顾静电场静电场静磁场静磁场真空中真空中介质中介质中边界条件边界条件麦克斯韦方程麦克斯韦方程一、一、 静电场静电场高斯定理表明高斯定理表明:静电场是有源场,电力线起始于正电荷,终止静电场是有源场,电力线起始于正电荷,终止 于负电荷。于负电荷。静电场的散度静电场的散度(微分形式)(微分形式)1. 静电场散度与高斯定理静电场散度与高斯定理静电场的高斯定理静电场的高斯定理(积分形式)(积分形式)环路定理表明环路定理表明:静电场是无旋场,是保守场,电场力做功与路径静电场是无旋场,是保守场,电场力做功与路径 无关。无关。静电场的旋度静电场的旋度(微分形式)(微分形式)2. 静电
2、场旋度与环路定理静电场旋度与环路定理静电场的环路定理静电场的环路定理(积分形式)(积分形式) 在电场分布具有一定对称性的情况下,可以利用高斯定理计在电场分布具有一定对称性的情况下,可以利用高斯定理计算电场强度。算电场强度。 3. 利用高斯定理计算电场强度利用高斯定理计算电场强度具有以下几种对称性的场可用高斯定理求解:具有以下几种对称性的场可用高斯定理求解: 球对称分布球对称分布:包括均匀带电的球面,球体和多层同心球壳等。:包括均匀带电的球面,球体和多层同心球壳等。带电球壳带电球壳多层同心球壳多层同心球壳均匀带电球体均匀带电球体aO0二、二、 恒定磁场恒定磁场1.1. 恒定磁场的散度与磁通连续性
3、原理恒定磁场的散度与磁通连续性原理磁通连续性原理磁通连续性原理表明表明:恒定磁场是无源场,磁感应线是无起点和恒定磁场是无源场,磁感应线是无起点和 终点的闭合曲线。终点的闭合曲线。恒定场的散度恒定场的散度(微分形式)(微分形式)磁通连续性原理磁通连续性原理(积分形式)(积分形式)安培环路定理表明安培环路定理表明:恒定磁场是有旋场,是非保守场、电流是磁恒定磁场是有旋场,是非保守场、电流是磁 场的旋涡源。场的旋涡源。恒定磁场的旋度恒定磁场的旋度(微分形式)(微分形式)2. 恒定磁场的旋度与安培环路定理恒定磁场的旋度与安培环路定理安培环路定理安培环路定理(积分形式)(积分形式) 解解 选用圆柱坐标系,
4、则选用圆柱坐标系,则应用安培环路定理,得应用安培环路定理,得例例 求载流无限长同轴电缆产生的磁感应强度。求载流无限长同轴电缆产生的磁感应强度。取安培环路取安培环路 ,交链的电流为,交链的电流为3. 利用安培环路定理计算磁感应强度利用安培环路定理计算磁感应强度 在磁场分布具有一定对称性的情况下,可以利用安培环路在磁场分布具有一定对称性的情况下,可以利用安培环路定理计算磁感应强度。定理计算磁感应强度。 三、介质中的电磁场三、介质中的电磁场极化的概念与极化强度的表征极化的概念与极化强度的表征磁化的概念与磁化强度的表征磁化的概念与磁化强度的表征四、四、 麦克斯韦方程组麦克斯韦方程组五、五、 边界条件边
5、界条件要清楚如何推导出的!要清楚如何推导出的!本章内容本章内容 3.1 静电场分析静电场分析 3.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析 3.3 恒定磁场分析恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理 3.5 镜像法镜像法 3.6 分离变量法分离变量法 静态电磁场:静态电磁场:场量不随时间变化,包括:场量不随时间变化,包括: 静电场、恒定电场和恒定磁场静电场、恒定电场和恒定磁场 静态情况下,电场和磁场由各自的源激发,且相互独立静态情况下,电场和磁场由各自的源激发,且相互独立 时变情况下,电场和磁场相互关联,构成统一的电磁场时变情况下,电
6、场和磁场相互关联,构成统一的电磁场3.1 静电场分析静电场分析 本节内容本节内容 3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件 3.1.2 电位函数电位函数 3.1.3 导体系统的电容与部分电容导体系统的电容与部分电容 3.1.4 静电场的能量静电场的能量 3.1.5 静电力静电力2. 边界条件边界条件微分形式:微分形式:本构关系:本构关系:1. 基本方程基本方程积分形式:积分形式:或或或或3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件若分界面上不存在面电荷,即若分界面上不存在面电荷,即 ,则,则介质介质2 2介质介质1 1 在静电平衡的情况下,导体内部的
7、电场为在静电平衡的情况下,导体内部的电场为0,则导体表面的,则导体表面的边界条件为边界条件为 或或 场矢量的折射关系场矢量的折射关系 导体表面的边界条件导体表面的边界条件由由即即静电场可以用一个标量函数的梯度来表示,静电场可以用一个标量函数的梯度来表示,标量函数标量函数 称为静称为静电场的标量电位或简称电位,单位为电场的标量电位或简称电位,单位为V V(伏特)。(伏特)。1. 电位函数的定义电位函数的定义3.1.2 电位函数电位函数静电场的电场强度矢量等于负的电位梯度静电场的电场强度矢量等于负的电位梯度沿电场线方向电位降低,而且是电位下降最快的方向沿电场线方向电位降低,而且是电位下降最快的方向
8、2. 电位的表达式电位的表达式对于连续的体分布电荷,由对于连续的体分布电荷,由同理得,面电荷的电位:同理得,面电荷的电位: 故得故得点电荷的电位:点电荷的电位:线电荷的电位:线电荷的电位:3. 3. 电位差电位差电位差电位差两端点乘两端点乘 ,则有,则有将将上式两边从点上式两边从点P到点到点Q沿任意路径进行积分,得沿任意路径进行积分,得关于电位差的说明关于电位差的说明 P、Q 两点间的电位差等于电场力将单位正电荷从两点间的电位差等于电场力将单位正电荷从P点移至点移至Q 点点 所做的功,电场力使单位正电荷由高电位处移到低电位处。所做的功,电场力使单位正电荷由高电位处移到低电位处。 电位差也称为电
9、压,可用电位差也称为电压,可用U 表示。表示。 电位差有确定值,只与首尾两点位置有关,与积分路径无关。电位差有确定值,只与首尾两点位置有关,与积分路径无关。P、Q 两点间的电位差两点间的电位差电场对单电场对单位做的功位做的功 静电位不惟一,可以相差一个常数,即静电位不惟一,可以相差一个常数,即选参考点选参考点令参考点电位为零令参考点电位为零电位确定值电位确定值( (电位差电位差) )两点间电位差有定值两点间电位差有定值 选择电位参考点的原则选择电位参考点的原则 应使电位表达式有意义。应使电位表达式有意义。 应使电位表达式最简单。若电荷分布在有限区域,通常取无应使电位表达式最简单。若电荷分布在有
10、限区域,通常取无 限远作电位参考点。限远作电位参考点。 同一个问题只能有一个参考点。同一个问题只能有一个参考点。4. 电位参考点电位参考点 为为使使空空间间各各点点电电位位具具有有确确定定值值,可可以以选选定定空空间间某某一一点点作作为为参参考考点点,且且令令参参考考点点的的电电位位为为零零,由由于于空空间间各各点点与与参参考考点点的的电电位位差差为为确确定值,所以该点的电位也就具有确定值,即定值,所以该点的电位也就具有确定值,即在均匀介质中,有在均匀介质中,有5. 电位的微分方程电位的微分方程在无源区域,在无源区域,标量泊松方程标量泊松方程拉普拉斯方程拉普拉斯方程6. 6. 静电位的边界条件
11、静电位的边界条件静电位的边界条件静电位的边界条件 设设P1和和P2是是介介质质分分界界面面两两侧侧紧紧贴贴界界面面的的相相邻邻两两点点,其其电电位位分分别为别为1和和2。当两点间距离当两点间距离l0时时导体表面上电位的边界条件:导体表面上电位的边界条件:由由 和和媒质媒质2媒质媒质1 若介质分界面上无自由电荷,即若介质分界面上无自由电荷,即常数,常数, 例例3.1.4 两块无限大接地导体平板分别置于两块无限大接地导体平板分别置于 x = 0 和和 x = a 处,处,在两板之间的在两板之间的 x = b 处有一面密度为处有一面密度为 的均匀电荷分布,如图所的均匀电荷分布,如图所示。求两导体平板
12、之间的电位和电场。示。求两导体平板之间的电位和电场。 解解 在两块无限大接地导体平板之间,除在两块无限大接地导体平板之间,除 x = b 处有均匀面电处有均匀面电荷分布外,其余空间均无电荷分布,故电位函数满足一维拉普拉荷分布外,其余空间均无电荷分布,故电位函数满足一维拉普拉斯方程斯方程方程的解为方程的解为obaxy两两块无限大平行板无限大平行板利用边界条件,有利用边界条件,有 处,处,最后得最后得 处,处, 处,处,所以所以由此解得由此解得 如果充电过程进行得足够缓慢,就不会有能量辐射,充电过如果充电过程进行得足够缓慢,就不会有能量辐射,充电过程中外加电源所做的总功将全部转换成电场能量,或者说
13、电场能程中外加电源所做的总功将全部转换成电场能量,或者说电场能量就等于外加电源在此电场建立过程中所做的总功。量就等于外加电源在此电场建立过程中所做的总功。静电场一定是由某确定的电荷系统产生的,其能量来源于建静电场一定是由某确定的电荷系统产生的,其能量来源于建 立电荷系统的过程中外源提供的能量。立电荷系统的过程中外源提供的能量。静电场最基本的特征是对电荷有作用力,这表明静电场具有静电场最基本的特征是对电荷有作用力,这表明静电场具有 能量。能量。 任何形式的带电系统,都要经过从没有电荷分布到某个最终任何形式的带电系统,都要经过从没有电荷分布到某个最终电荷分布的建立电荷分布的建立(或充电或充电)过程
14、。在此过程中,外加电源必须克服过程。在此过程中,外加电源必须克服电荷之间的相互作用力而做功。电荷之间的相互作用力而做功。3.1.4 静电场的能量静电场的能量 1. 静电场的能量静电场的能量 设系统从零开始充电,最终带电量为设系统从零开始充电,最终带电量为 q 、电位为、电位为 。 充电过程中某一时刻的电荷量为充电过程中某一时刻的电荷量为q 、电位为、电位为 。(01) 当当增加为增加为(+ d)时,外电源做功为时,外电源做功为: (q d)。 对对从从0 到到 1 积分,即得到外电源所做的总功为积分,即得到外电源所做的总功为 根据能量守恒定律,此功也就是电量为根据能量守恒定律,此功也就是电量为
15、 q 的带电体具有的电的带电体具有的电场能量场能量We ,即,即 对于电荷体密度为对于电荷体密度为的体分布电荷,体积元的体分布电荷,体积元dV中的电荷中的电荷dV具具有的电场能量为有的电场能量为故体分布电荷的电场能量为故体分布电荷的电场能量为对于面分布电荷,对于面分布电荷,电场能量为电场能量为对于多导体组成的带电系统,则有对于多导体组成的带电系统,则有 第第i 个导体所带的电荷个导体所带的电荷 第第i 个导体的电位个导体的电位式中:式中:由于体积由于体积V 外的电荷密度外的电荷密度0,若将上式中的积分区域扩大,若将上式中的积分区域扩大到整个场空间,结果仍然成立。只要电荷分布在有限区域内,到整个
16、场空间,结果仍然成立。只要电荷分布在有限区域内,当闭合面当闭合面S 无限扩大时,则有无限扩大时,则有2. 电场能量密度电场能量密度 从场的观点来看,静电场的能量分布于电场所在的整个空间。从场的观点来看,静电场的能量分布于电场所在的整个空间。电场能量密度:电场能量密度:电场的总能量:电场的总能量:积分区域为电场积分区域为电场所在的整个空间所在的整个空间对于线性、各向同性介质,则有对于线性、各向同性介质,则有故故0S 例例 3.1.6 半径为半径为a 的球形空间内均匀分布有电荷体密度为的球形空间内均匀分布有电荷体密度为的电的电荷,试求静电场能量。荷,试求静电场能量。 解解: 方法一方法一,利用利用
17、 计算计算 根据高斯定理求得电场强度根据高斯定理求得电场强度 故故 方法二方法二:利用利用 计算计算 先求出电位分布先求出电位分布 故故本节内容本节内容 3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位 3.3.4 恒定磁场的能量恒定磁场的能量 3.3 恒定磁场分析恒定磁场分析微分形式微分形式: :1. 基本方程基本方程2. 边界条件边界条件本构关系:本构关系:或或若分界面上不存在面电流,即若分界面上不存在面电流,即JS0,则,则积分形式积分形式: :或或3.3.1 恒定磁场的基本方程和边界条件恒定磁场的
18、基本方程和边界条件本构关系:本构关系: 矢量磁位的定义矢量磁位的定义: 磁矢位的任意性磁矢位的任意性 与与电电位位一一样样,磁磁矢矢位位也也不不是是惟惟一一确确定定的的,它它加加上上任任意意一一个个标标量量 的梯度以后,仍然表示同一个磁场,即的梯度以后,仍然表示同一个磁场,即由于由于即恒定磁场可以用一个矢量函数的旋度来表示。即恒定磁场可以用一个矢量函数的旋度来表示。 磁磁矢矢位位的的任任意意性性是是因因为为只只规规定定了了它它的的旋旋度度,没没有有规规定定其其散散度度造造成成的的。为为了了得得到到确确定定的的A,可可以以对对A的的散散度度加加以以限限制制,在在恒恒定定磁磁场中通常规定,并称为库
19、仑规范。场中通常规定,并称为库仑规范。1. 恒定磁场的矢量磁位恒定磁场的矢量磁位矢量磁位或称磁矢位矢量磁位或称磁矢位 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位 磁矢位的微分方程磁矢位的微分方程在无源区:在无源区:矢量泊松方程矢量泊松方程矢量拉普拉斯方程矢量拉普拉斯方程 磁矢位的表达式磁矢位的表达式毕奥毕奥-萨伐尔定律萨伐尔定律库仑定律库仑定律(可以证明满足(可以证明满足 ) 对于面电流和细导线电流回路,磁矢位分别为对于面电流和细导线电流回路,磁矢位分别为 利用磁矢位计算磁通量:利用磁矢位计算磁通量:细线电流细线电流:面电流面电流:由此可得由此可得 电流元产生的磁矢位
20、是与电流元矢量平行的矢量。电流元产生的磁矢位是与电流元矢量平行的矢量。2. 恒定磁场的标量磁位恒定磁场的标量磁位 一一般般情情况况下下,恒恒定定磁磁场场只只能能引引入入磁磁矢矢位位来来描描述述,但但在在无无传传导导电流(电流(J0)的空间)的空间 中,与静电场类似,则有中,与静电场类似,则有即即在在无无传传导导电电流流(J0)的的空空间间中中,可可以以引引入入一一个个标标量量位位函函数数来来描述磁场。描述磁场。 标量磁位的引入标量磁位的引入标量磁位或磁标位标量磁位或磁标位 磁标位的微分方程磁标位的微分方程在线性、各向同性的均匀媒质中在线性、各向同性的均匀媒质中3.3.4 恒定磁场的能量恒定磁场
21、的能量1. 磁场能量磁场能量 在恒定磁场建立过程中,电源克服感应电动势做功所供给的在恒定磁场建立过程中,电源克服感应电动势做功所供给的能量,就全部转化成磁场能量。能量,就全部转化成磁场能量。 电流回路在恒定磁场中受到磁场力的作用而运动,表明恒定电流回路在恒定磁场中受到磁场力的作用而运动,表明恒定 磁场具有能量。磁场具有能量。 磁场能量是在建立电流的过程中,由电源供给的。当电流从磁场能量是在建立电流的过程中,由电源供给的。当电流从 零开始增加时,回路中的感应电动势要阻止电流的增加,因零开始增加时,回路中的感应电动势要阻止电流的增加,因 而必须有外加电压克服回路中的感应电动势。而必须有外加电压克服
22、回路中的感应电动势。 假定建立并维持恒定电流时,没有热损耗。假定建立并维持恒定电流时,没有热损耗。 假定在恒定电流建立过程中,电流的变化足够缓慢,没有辐假定在恒定电流建立过程中,电流的变化足够缓慢,没有辐 射损耗。射损耗。2. 磁场能量密度磁场能量密度 从场的观点来看,磁场能量分布于磁场所在的整个空间。从场的观点来看,磁场能量分布于磁场所在的整个空间。磁场能量密度:磁场能量密度:磁场的总能量:磁场的总能量:积分区域为电场积分区域为电场所在的整个空间所在的整个空间对于线性、各向同性介质,则有对于线性、各向同性介质,则有 例例3.3.7 同轴电缆的同轴电缆的内导体半径为内导体半径为a ,外导体的内
23、、外半径外导体的内、外半径分别为分别为 b 和和 c ,内外导体之间填充的介质及导体的磁导率均为,内外导体之间填充的介质及导体的磁导率均为如图所示。导体中通有电流如图所示。导体中通有电流 I ,试求同轴电缆中单位长度储存的,试求同轴电缆中单位长度储存的磁场能量。磁场能量。 解解:由安培环路定理,得:由安培环路定理,得三个区域单位长度内的磁场能量分别为三个区域单位长度内的磁场能量分别为单位长度内总的磁场能量为单位长度内总的磁场能量为3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理 本节内容本节内容本节内容本节内容 3.4.1 3.4.1 边值问题的类型边值问题的类型边值问
24、题的类型边值问题的类型 3.4.2 3.4.2 惟一性定理惟一性定理惟一性定理惟一性定理分布型问题:已知场源分布,求空间各点场的分布。分布型问题:已知场源分布,求空间各点场的分布。 边值型问题边值型问题:在给定的边界条件下,求解位函数的泊松方程:在给定的边界条件下,求解位函数的泊松方程 或拉普拉斯方程或拉普拉斯方程3.4.1 3.4.1 边值问题的类型边值问题的类型边值问题的类型边值问题的类型已知场域边界面已知场域边界面S 上的位函数值,即上的位函数值,即第一类边值问题(或狄里赫利问题)第一类边值问题(或狄里赫利问题)已知场域边界面已知场域边界面S 上的位函数的法向导数值,即上的位函数的法向导
25、数值,即 已知场域一部分边界面已知场域一部分边界面S1 上的上的位函数值,而另一部分边界位函数值,而另一部分边界面面S2 上则已知上则已知位函数的法向导数值,即位函数的法向导数值,即第三类边值问题(或混合边值问题)第三类边值问题(或混合边值问题)第二类边值问题(或纽曼问题)第二类边值问题(或纽曼问题) 自然边界条件自然边界条件 (无界空间)(无界空间) 周期边界条件周期边界条件几种常见的边界条件几种常见的边界条件 衔接条件衔接条件以以静静电电位位的的边边界界条条件件为为例例,不不同媒质分界面上,同媒质分界面上, 在场域在场域V 的边界面的边界面S上给定上给定 或或 的的值,则泊松方程或拉普拉斯方程在场域值,则泊松方程或拉普拉斯方程在场域V 具具有惟一值。有惟一值。 3.4.2 惟一性定理惟一性定理惟一性定理的重要意义惟一性定理的重要意义给出了静态场边值问题具有惟一解的条件给出了静态场边值问题具有惟一解的条件为静态场边值问题的各种求解方法提供了理论依据为静态场边值问题的各种求解方法提供了理论依据为求解结果的正确性提供了判据为求解结果的正确性提供了判据惟一性定理的表述惟一性定理的表述