中南大学高等数学课件111

上传人:M****1 文档编号:579204080 上传时间:2024-08-26 格式:PPT 页数:15 大小:1.39MB
返回 下载 相关 举报
中南大学高等数学课件111_第1页
第1页 / 共15页
中南大学高等数学课件111_第2页
第2页 / 共15页
中南大学高等数学课件111_第3页
第3页 / 共15页
中南大学高等数学课件111_第4页
第4页 / 共15页
中南大学高等数学课件111_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《中南大学高等数学课件111》由会员分享,可在线阅读,更多相关《中南大学高等数学课件111(15页珍藏版)》请在金锄头文库上搜索。

1、一、最大值和最小值定理一、最大值和最小值定理定义定义: :例如例如,定定理理1(1(最最大大值值和和最最小小值值定定理理) ) 在在闭闭区区间间上上连连续续的函数一定有最大值和最小值的函数一定有最大值和最小值. .注意注意: :1.若区间是开区间若区间是开区间, 定理不一定成立定理不一定成立; 2.若区间内有间断点若区间内有间断点, 定理不一定成立定理不一定成立.定定理理2(2(有有界界性性定定理理) ) 在在闭闭区区间间上上连连续续的的函函数数一一定定在该区间上有界在该区间上有界. .证证二、介值定理二、介值定理定义定义: :几何解释几何解释:几何解释几何解释:MBCAmab证证由零点定理由

2、零点定理,推论推论 在闭区间上连续的函数必取得介于最大在闭区间上连续的函数必取得介于最大值值 与最小值与最小值 之间的任何值之间的任何值. .例例1 1证证由零点定理由零点定理,例例2 2证证由零点定理由零点定理,三、小结三、小结四个定理四个定理有界性定理有界性定理;最值定理最值定理;介值定理介值定理;根的存在性定理根的存在性定理.注意注意1闭区间;闭区间; 2连续函数连续函数这两点不满足上述定理不一定成立这两点不满足上述定理不一定成立解题思路解题思路1.1.直接法直接法:先利用最值定理先利用最值定理,再利用介值定理再利用介值定理;2.2.辅助函数法辅助函数法: :先作辅助函数先作辅助函数F(x),再利用零点定理再利用零点定理;补充:补充:证明证明讨论讨论:由零点定理知由零点定理知,综上综上,思考题思考题下述命题是否正确?下述命题是否正确?思考题解答思考题解答不正确不正确.例函数例函数练练 习习 题题

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号