高数函数极限方法总结ppt课件

上传人:M****1 文档编号:578475113 上传时间:2024-08-24 格式:PPT 页数:19 大小:46KB
返回 下载 相关 举报
高数函数极限方法总结ppt课件_第1页
第1页 / 共19页
高数函数极限方法总结ppt课件_第2页
第2页 / 共19页
高数函数极限方法总结ppt课件_第3页
第3页 / 共19页
高数函数极限方法总结ppt课件_第4页
第4页 / 共19页
高数函数极限方法总结ppt课件_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《高数函数极限方法总结ppt课件》由会员分享,可在线阅读,更多相关《高数函数极限方法总结ppt课件(19页珍藏版)》请在金锄头文库上搜索。

1、在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么高数函数极限方法总结高数函数极限方法总结周凌伊周凌伊在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么1、直接代入法、直接代入法分母不为零在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么2约去零因子法约去零因子法在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么一般分子分母同除最高次方;对于多项式函数3 3、抓大头法抓大头法在日常

2、生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么4分子分子(母母)有理化法有理化法分子或分母有理化求极限,是通过有理化化去无理式。及时分离极限式中的非零因子分离极限式中的非零因子是解题的关键在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么5应用两个重要极限公式(重要公式法)应用两个重要极限公式(重要公式法) 第一个重要极限 第二个重要极限(1+0)。第二个重要极限主要搞清楚凑的步骤:先凑出,再凑 ,最后凑指数部分。强行代入,定型定法在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识

3、到自己在浪费,也许你认为浪费这一点点算不了什么6等价无穷小代换法等价无穷小代换法【说明】(1) 等价无穷小量代换,只能代换极限式中的因式因式;(2)此方法在各种求极限的方法中应作为首选应作为首选。(3)(3)只能在乘除时使用,但是不是说一定在加减的时候不能用,只能在乘除时使用,但是不是说一定在加减的时候不能用,但是前提要证明拆分后极限依然存在。但是前提要证明拆分后极限依然存在。ax1xlna(a是固定的,x是变量)在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么7、换元法、代换法、换元法、代换法在日常生活中,随处都可以看到浪费粮食的现象。

4、也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么8 8、夹逼法则(迫敛法则):、夹逼法则(迫敛法则):数列极限适当变形,放缩和扩大一.如果数列Xn,Yn及Zn满足下列条件: (1)从某项起,即当nn。,其中n。N,有YnXnZn。 (n=n。+1,n。+2,), (2)当n,limYn =a;当n ,limZn =a, 那么,数列Xn的极限存在,且当 n,limXn =a。 二.F(x)与G(x)在Xo连续且存在相同的极限A, limF(x)=limG(x)=A 则若有函数f(x)在Xo的某邻域内恒有 F(x)f(x)G(x) 则当X趋近Xo,有limF(x)limf(x)limG

5、(x) 即Alimf(x)A 故 limf(Xo)=A在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么9、收敛数列的性质收敛数列的性质1.收敛数列与其子数列收敛同一个数2、(极限存在性定理)单调递增有上界函数收敛,单调递减有下界函数收敛。(证明)利用每项数列趋于同一数方程求解。(求出极限)在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么1010、无穷小和无穷大的性质无穷小和无穷大的性质:无穷小与有界函数的处理办法尤其对正余旋的复杂函数与其他函数相乘的形式相同极限条件下1.有限个无穷小

6、的和是无穷小,无限个不一定2.无穷小与有界函数的乘积是无穷小3.有限个、无限个无穷小的乘积是无穷小4.有限个无穷大之积是无穷大5.无穷大与有界函数之和是无穷大,之积不一定6.同号无穷大之和是无穷大在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么11、极限的四则运算性质极限的四则运算性质在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么12、利用单侧极限、利用单侧极限在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么12、函数极限的定

7、义、函数极限的定义 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数(无论它多么小),总存在正数 ,使得当x满足不等式0|x-x。| 时,对应的函数值f(x)都满足不等式:|f(x)-A| 那么常数A就叫做函数f(x)当xx。时的极限。在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么1414、函数的连续性函数的连续性在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么 x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速

8、率的快慢)当x趋近无穷的时候 他们的比值的极限一眼就能看出来了1515、特殊型、特殊型等比等差数列公式应用等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)各项的拆分相加各项的拆分相加(来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么【注】许多变动上显的积分表示的极限,常用罗必塔法则求解 LHopital 法则、洛必达法则(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件)(还有一点 数列极限的n当然是

9、趋近于正无穷的 不可能是负无穷!)(导数存在、极限存在)(必须是 0比0 无穷大比无穷大)(当然还要注意分母不能为0)0乘以无穷 无穷减去无穷 ( 应为无穷大与无穷小成倒数的关系) 0的0次方 1的无穷次方 无穷的0次方对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , 16、用罗必塔法则求极限(上下分别、用罗必塔法则求极限(上下分别求导)求导)在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么17、对数恒等式、幂指函数、对数恒等式、幂指函数在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么 18、利用、利用Taylor公式求极限公式求极限泰勒展开式公式 (含有e的x次方的时候 ,尤其是含有正余弦的加减的时候要特别注意E

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号