13.1.2线段垂直平分线的性质优质PPT教学课件.ppt

上传人:工**** 文档编号:577500688 上传时间:2024-08-22 格式:PPT 页数:28 大小:1.55MB
返回 下载 相关 举报
13.1.2线段垂直平分线的性质优质PPT教学课件.ppt_第1页
第1页 / 共28页
13.1.2线段垂直平分线的性质优质PPT教学课件.ppt_第2页
第2页 / 共28页
13.1.2线段垂直平分线的性质优质PPT教学课件.ppt_第3页
第3页 / 共28页
13.1.2线段垂直平分线的性质优质PPT教学课件.ppt_第4页
第4页 / 共28页
13.1.2线段垂直平分线的性质优质PPT教学课件.ppt_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《13.1.2线段垂直平分线的性质优质PPT教学课件.ppt》由会员分享,可在线阅读,更多相关《13.1.2线段垂直平分线的性质优质PPT教学课件.ppt(28页珍藏版)》请在金锄头文库上搜索。

1、给我最大快乐的,不是已懂的知识,给我最大快乐的,不是已懂的知识,而是不断的学习而是不断的学习.-高斯高斯1课前复习课前复习1 1、什么叫轴对称图形、什么叫轴对称图形? ?什么叫对称轴什么叫对称轴? ?如果一个图形沿着一条线折叠,两侧如果一个图形沿着一条线折叠,两侧的图形能够完全重合,这样的图形就的图形能够完全重合,这样的图形就是是轴对称图形轴对称图形。折痕所在的直线就是轴对称图形折痕所在的直线就是轴对称图形的的对称轴。对称轴。22 2、什么叫、什么叫两个图形两个图形成轴对称成轴对称? ?如果把一个图形沿着某如果把一个图形沿着某一直线一直线折叠折叠, ,能能够与另一个图形重合够与另一个图形重合,

2、 ,那么就说这那么就说这两个两个图形图形关于关于这条直线对称这条直线对称, ,也称为也称为这两个这两个图形成轴对称图形成轴对称, ,这条直线也叫作这条直线也叫作对称轴对称轴, ,折叠后重合的点是对应点,也叫折叠后重合的点是对应点,也叫对称点对称点3比较归纳:比较归纳:轴对称图形两个图形成轴对称区别个图形个图形联系沿一条直线折叠,直线两旁的部分能够都有如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线;如果把两个成轴对称的图形看成一个图形,那么这个图形就是一一两两互相重合互相重合对称轴对称轴对称对称轴对称图形轴对称图形4 经过线段的经过线段的中点中点并且并且垂直垂直于这条线于这

3、条线段的段的直线直线,叫做这条线段的,叫做这条线段的垂直平分线垂直平分线(也称(也称中垂线中垂线)。)。线段的垂直平分线的定义线段的垂直平分线的定义O51、如果两个图形关于某条直线对称,那么对称、如果两个图形关于某条直线对称,那么对称轴是任何一对应点连线段的垂直平分线轴是任何一对应点连线段的垂直平分线 2、轴对称图形的对称轴,是任何一对应点所、轴对称图形的对称轴,是任何一对应点所连线段的垂直平分线连线段的垂直平分线l垂直平分垂直平分l垂直平分垂直平分l垂直平分垂直平分图形轴对称的性质图形轴对称的性质6ABlP1P2P3P4如图,木条如图,木条l与与AB钉在一钉在一起,起,l垂直平分垂直平分AB

4、, P1 ,P2, P3 P4,是是l上的点,上的点,分别量出点分别量出点P1 ,P2, P3 P4 ,到到A与与B的距离,的距离,你有什么发现?你有什么发现?发现:发现:AP1=BP1;AP2=BP2;AP3=BP3;AP4=BP4.探究发现探究发现动手动手测量:测量:AP1BP1;问答问答7由此你能得到什么规律?由此你能得到什么规律? 命题命题:线段垂直平分线线段垂直平分线上的点到这条线段两个端点上的点到这条线段两个端点的距离相等。的距离相等。8命题:线段垂直平分线上的命题:线段垂直平分线上的点点和这条和这条线段线段两个端点两个端点的距离相等。的距离相等。 已知:如图,已知:如图, 直线直

5、线MNAB,垂足为垂足为C, 且且AC=CB.点点P在在MN上上.求证:求证: PA=PB证明:证明:MNAB PCA= PCB 在在 PAC和和 PBC中,中, AC=BC PCA= PCB PC=PC PAC PBC PA=PB证一证证一证ABPMN NC9性质定理:性质定理:线段垂直平分线上的点到线段垂直平分线上的点到这条线段两个端点的距离相等。这条线段两个端点的距离相等。ABPMNCPA=PB点点P P在线段在线段ABAB的垂直的垂直平分线上平分线上性质定理有何作用?性质定理有何作用?可证明线段相等可证明线段相等定理应用的几何语言格式:定理应用的几何语言格式: MN垂直平分垂直平分AB

6、,点,点P在在MN上上 PA=PB线段垂直平分线性质线段垂直平分线性质108追踪练习追踪练习练练习习1如如图图,在在ABC 中中,BC = =8,AB 的的垂垂直直平平分分线线交交BC于于D,AC 的的中中垂垂线线交交BC 与与E,则则ADE 的的周周长等于长等于_A B C D E 11ABPPA=PBPA=PB点点P P在线段在线段ABAB的垂直的垂直平分线上平分线上反过来,如果反过来,如果PA=PBPA=PB,那么点,那么点P P是否在线段是否在线段ABAB的垂直平分线上的垂直平分线上? ?换一换换一换12探索并证明线段垂直平分线的判定探索并证明线段垂直平分线的判定证明:证明:过点过点P

7、 作作PC AB于点C则则PCA = =PCB = =90在在RtPCA 和和RtPCB 中,中,PA = =PB,PC = =PC, RtPCA RtPCB(HL) AC = =BC又又 PCAB, 点点P 在线段在线段AB 的垂直平分线上的垂直平分线上PAB C 已知:如图,已知:如图,PA =PB求证:点求证:点P 在线段在线段AB 的垂直平分线上的垂直平分线上13ABPCPA=PBPA=PB点点P P在线段在线段ABAB的垂直的垂直平分线上平分线上判定定理:判定定理:与一条线段两个端与一条线段两个端点距离相等的点,在这条线段点距离相等的点,在这条线段的垂直平分线上。的垂直平分线上。判定

8、定理有何作用?判定定理有何作用?用途:判定一条直线是线段的垂直平分线用途:判定一条直线是线段的垂直平分线.判定应用的几何语言格式:判定应用的几何语言格式: PA=PB, 点点P在线段在线段MN垂直平分上垂直平分上14 判定定理:与判定定理:与一条线段两个端点距离相等的点,一条线段两个端点距离相等的点,在这条线段的垂直平分线上。在这条线段的垂直平分线上。 性质定理:性质定理:线段垂直平分线上的点和这条线段两线段垂直平分线上的点和这条线段两个端点的距离相等。个端点的距离相等。PA=PBPA=PB点点P P在线段在线段ABAB的垂直的垂直平分线上平分线上判定判定ABPC性质性质小结:线段垂直平分线性

9、质与判定:小结:线段垂直平分线性质与判定:15用一根木棒和一根弹性均匀的橡皮筋,做用一根木棒和一根弹性均匀的橡皮筋,做一一 个简易的个简易的“弓弓”,“箭箭”通过木棒通过木棒中中央央的孔射出去,怎样才能保持射出去的方的孔射出去,怎样才能保持射出去的方向与木棒垂直呢?向与木棒垂直呢?只要只要AC=BCAC=BC就就可以了可以了ABC为什么?为什么?16 (1 1)线段)线段ABAB的垂直平分线上的所有点都满的垂直平分线上的所有点都满 足足“与点与点A A、B B的距离相等的距离相等”这一条件吗?这一条件吗? 线段的垂直平分线线段的垂直平分线可以看作是和线段两可以看作是和线段两个端点距离相等的所有

10、的点的集合个端点距离相等的所有的点的集合想一想想一想(2 2)满足)满足“与与A A、B B的距离相等的距离相等”的所有点都的所有点都在线段在线段ABAB的垂直平分线上吗?的垂直平分线上吗?171、如图直线、如图直线MN垂直平垂直平分线段分线段AB,则,则AE=AFABMEFN182、如图线段、如图线段MN被直线被直线AB垂直平分,则垂直平分,则ME=NEABMNE193、如图、如图PA=PB,则直线,则直线MN是线段是线段AB的垂直平分线。的垂直平分线。ABMNP204、如图,、如图,ADBC,BD=DC,点,点C在在AE的垂直的垂直平分线上,平分线上,AB、AC 、CE 的长度有什么关系?

11、的长度有什么关系?AB+BD 与与DE有什么关系?有什么关系?AC=CEAB+BD=DEECDBA21二、逆定理:二、逆定理:与一条线段两个端点距离相等的点,在这条与一条线段两个端点距离相等的点,在这条 线段的垂直平分线上。线段的垂直平分线上。 线段的垂直平分线线段的垂直平分线一、性质定理:一、性质定理:线段垂直平分线上的点和这条线段两个端线段垂直平分线上的点和这条线段两个端 点的距离相等。点的距离相等。PA=PBPA=PB点点P P在线段在线段ABAB的垂直的垂直平分线上平分线上线段垂直平分线判定线段垂直平分线判定线段垂直平分线性质线段垂直平分线性质三、三、 线段的垂直平分线的集合定义:线段

12、的垂直平分线的集合定义: 线段的垂直平分线可以看作是和线段两个线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合端点距离相等的所有点的集合2213.3 角的平分线角的平分线ODEABPC定理定理1 在角的平分线上的点到这个在角的平分线上的点到这个角的两边的角的两边的距离相等距离相等。定理定理2 到一个角的两边的到一个角的两边的距离相等距离相等的点,在这个角的平分线上。的点,在这个角的平分线上。 角的平分线是到角的角的平分线是到角的两边两边距离距离相等相等的所有点的集合的所有点的集合 14.1 线段的垂直平分线线段的垂直平分线定定 理理 线段垂直平分线上的点和这线段垂直平分线上的点和

13、这条线段两个端点的条线段两个端点的距离相等距离相等。逆定理逆定理 和一条线段两个端点和一条线段两个端点距离相距离相等等的点,在这条线段的垂直平分线上。的点,在这条线段的垂直平分线上。 线段的垂直平分线可以看作是和线段线段的垂直平分线可以看作是和线段两个端点两个端点距离相等距离相等的所有点的集合的所有点的集合ABMNP点的集合是一条射线点的集合是一条射线点的集合是一条直线点的集合是一条直线231、如图,、如图,AB=AC,MB=MC,直线,直线AM是是线段线段BC的垂直平分线吗?的垂直平分线吗?ABCM242、如图,、如图, ABC中中,DE是是AC的垂直平分的垂直平分线,线,AE=3cm, ABD的周长为的周长为13cm,求求 ABC的周长?的周长?ECDBA253、如图,、如图, ABC中中,BC的垂直平分线分的垂直平分线分别交别交AC、BC于点于点E、D, ABE的周长的周长为为15,BD=5,求,求 ABC的周长?的周长?ECDBA26 4、如图、如图 ABC中,中,AC20cm,DE垂直平分垂直平分AB,若,若BC=12cm,求,求 BCD的周长。的周长。DCEBA27寄语寄语 如果你智慧的双眼善于观察,善于发现,那你一定会觉得数学就在我们的身边。 老师相信:你辛勤的汗水一定会浇灌出智慧的花朵!28

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 家居行业

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号