《三角形的概念和三边关系.ppt》由会员分享,可在线阅读,更多相关《三角形的概念和三边关系.ppt(22页珍藏版)》请在金锄头文库上搜索。
1、2.1三角形(一)三角形的概念三角形的概念和三边关系和三边关系1.1.如何表示线段?如何表示线段? 2.如何表示一个角?如何表示一个角? ABaABo线段AB或线段a表示法:表示法:AOB或者或者O1或者或者 或者或者1请大家仔细观察一组图片,看看主要是有那种几何图形构成请大家仔细观察一组图片,看看主要是有那种几何图形构成?读一读 什么样的图形叫三角形? 如何用符号语言表示一个三角形 什么是三角形的边,顶点,内角。课本42-43页,并回答以下问题:你认识三角形了吗?自主预习自主预习三角形的定义三角形的定义 : 不在同一直线上的三条线段首尾相接所不在同一直线上的三条线段首尾相接所构构成的成的图形
2、,叫做三角形图形,叫做三角形 注意点:注意点:(1 1)三条线段()三条线段(2 2)不在同一直线上)不在同一直线上(3 3)首尾顺次相接)首尾顺次相接什么叫三角形?A AB BC Ca ab bc c记作:记作:ABC ABC 读作:三角形读作:三角形ABCABC三角形的顶点:三角形的顶点: A A、B B、C C三角形的边:三角形的边:ABAB、ACAC、BCBC三角形的内角三角形的内角: :A A 、 B B 、 C Cc cb ba a三角形三角形ABCABC三角形的表示及概念趁热打铁:比一比趁热打铁:比一比 谁最快谁最快记作: 顶点:顶点: 内角:内角: 边:边: 或或dcb BCD
3、点点B,点点C,点点D B C DBC, CD, DBd, c, bABCD1.如图图中有如图图中有_个三角形?个三角形?2.请用符号与字母表示出来请用符号与字母表示出来_、_、_;小思考小思考:1、B的对边:的对边: 2、以以AD为边的三角形有:为边的三角形有:3 ABC ABD ADC ABD ADCADAC观察:观察:以下三个三角形的边各有什么特点?以下三个三角形的边各有什么特点?三边互不相等有两边相等三边都相等等腰三角形等边三角形(正三角形)顶顶角角腰腰腰腰底底底角底角底角底角等边三角形等边三角形也是等腰三也是等腰三角形吗?角形吗?等边三角形是特殊的等腰三角形。按按边边分分不等边三角形
4、(三边都不相等的三角形不等边三角形(三边都不相等的三角形)等腰三角形等腰三角形三角形的分类三角形的分类只有两条边相等的等腰三角形只有两条边相等的等腰三角形等边三角形(或正三角形)等边三角形(或正三角形) 有一个周长为有一个周长为11的的 ABC,其中,其中AB=3,BC=5 请问请问 ABC是什么三角形是什么三角形等腰三角形等腰三角形抢答蚂蚁从蚂蚁从A到到B的路线有那些?走那条路线最的路线有那些?走那条路线最近呢?为什么?近呢?为什么?ABC路线路线1:从:从A到到C再到再到B路线走路线走路线路线2:沿线段:沿线段AB走走请问:路线请问:路线1、路线、路线2那条路程较短,你能那条路程较短,你能
5、说出你的根据吗?说出你的根据吗?两点之间线段最短两点之间线段最短由此可以得到:由此可以得到:三角形任何两边的和大于第三边三角形任何两边的和大于第三边.ABCabca+bca+cbc+ba三角形任何两边的差小于第三边三角形任何两边的差小于第三边.abca c bc b a判断能否构成三角形的依据例例1、长度为长度为6cm, 4cm, 3cm三条线三条线段能否组成三角形?段能否组成三角形? 只要只要满足较小的两条满足较小的两条线段之和大于第三条线段之和大于第三条线段,便可构成三角线段,便可构成三角形形;若不满足,则不能若不满足,则不能构成三角形构成三角形.判断方法:判断方法:(1 1)找出较长边。
6、)找出较长边。(2 2)比较大小:较长边)比较大小:较长边 较短两边之和较短两边之和(3 3)判断能否组成三角形。)判断能否组成三角形。解解: : 6+43 6+34 4+36能组成三角形能组成三角形小于小于练习三:练习三: 判断下列各组线段中,哪些能组成三角形,判断下列各组线段中,哪些能组成三角形,哪些不能组成三角形,并说明理由哪些不能组成三角形,并说明理由(1)a2.5cm,b3cm,c5cm;(2) e 6.3cm, f 6.3cm, g 12.6cm解解(1) 最长线段是最长线段是c=5cm,a+b=2.5+3=5.5(cm) a+bc.线段线段a,b,c能组成三角形。能组成三角形。(
7、2) 最长线段是最长线段是g=12.6cm,e+f=6.3+6.3=12.6(cm) e+f=g.线段线段e,f,g不能组成三角形。不能组成三角形。下列长度的各组线段能否组成一个三角形?下列长度的各组线段能否组成一个三角形?(1)15cm、10cm、7cm (2) 4cm、5cm、10cm (3) 3cm、8cm、5cm (4) 4cm、5cm、6cm小试牛刀小试牛刀思考:思考:有两条长度分别为有两条长度分别为5cm和和7cm的线段,的线段,要组成一个三角形那么第三条线段的长度在什么要组成一个三角形那么第三条线段的长度在什么范围内呢?范围内呢? 解题技巧:解题技巧:三角形第三边的取值范围是三角
8、形第三边的取值范围是: 两边之差两边之差第三边第三边两边之和两边之和答:不能。如果此人一步能走答:不能。如果此人一步能走3米,由三角形三边的关系得,米,由三角形三边的关系得,此人两腿长要大于此人两腿长要大于3米,这与米,这与实际情况相矛盾,所以它一步实际情况相矛盾,所以它一步不能走不能走3米。米。姚明腿长姚明腿长1.281.28米米 有人说他一步能走有人说他一步能走3 3米米, ,你相你相信吗?能否用今天学过的知识信吗?能否用今天学过的知识去解答呢去解答呢? ?已知:等腰三角形周长为已知:等腰三角形周长为18cm,如果一边长等于,如果一边长等于4cm,求另两边的长?求另两边的长? 解:若底边长
9、为解:若底边长为4cm,设腰长为,设腰长为xcm,则有,则有2x+4=18 解方程的:解方程的:x=7 若一条腰长为若一条腰长为4cm,设底边长为,设底边长为xcm,则有,则有24+x=18 解得:解得:x=10因为因为4+4c,所以所以a、b、c三边可以构成三角形(三边可以构成三角形( )(4)已知等腰三角形的两边长分别为)已知等腰三角形的两边长分别为8cm,3cm, 则这三角形的周长为则这三角形的周长为 ( )(A) 14cm (B)19cm (C) 14cm或或19cm (D) 不确定不确定2Bv你有什么收获?v这节课你印象最深的是什么?v还有什么不明白的吗?知识梳理知识梳理 作业:作业:P44练习第1、2题 人生的价值,并不是用时间,而是用深度去衡量的。 列夫托尔斯泰 结束语结束语