生物大分子结构与功能第5章蛋白质的柔性结构

上传人:cl****1 文档编号:576794246 上传时间:2024-08-20 格式:PPT 页数:113 大小:14.08MB
返回 下载 相关 举报
生物大分子结构与功能第5章蛋白质的柔性结构_第1页
第1页 / 共113页
生物大分子结构与功能第5章蛋白质的柔性结构_第2页
第2页 / 共113页
生物大分子结构与功能第5章蛋白质的柔性结构_第3页
第3页 / 共113页
生物大分子结构与功能第5章蛋白质的柔性结构_第4页
第4页 / 共113页
生物大分子结构与功能第5章蛋白质的柔性结构_第5页
第5页 / 共113页
点击查看更多>>
资源描述

《生物大分子结构与功能第5章蛋白质的柔性结构》由会员分享,可在线阅读,更多相关《生物大分子结构与功能第5章蛋白质的柔性结构(113页珍藏版)》请在金锄头文库上搜索。

1、第五章:第五章: 蛋白质的柔性结构蛋白质的柔性结构天然折叠的蛋白分子往往不是以一种构象状态存在的。在晶体结构中我们看到的往往仅是一种状态的构象,它是蛋白质分子的一个平均构象。实际上,蛋白质分子始终是处于一种呼吸的状态。蛋白质结构中所有的原子都在运动,这些原子的运动通常是随机的,但有时可以是集合性的运动。这种集合性的运动引起分子中的原子团在相同的方向上产生运动,造成蛋白质分子中的侧链可以从一种构象转化为另一种构象。某些环区域也并不总是固定在一种单一的构象状态,螺旋也可以互相产生滑动,完整的结构域之间也可以改变它们的堆积接触以打开或关闭结构域之间的距离。通常这些运动都是比较小的,有时小到仅有1/1

2、0 的运动,但有时这种集合性运动可以很大,大到足以具有重要的生物学意义。这样大的集合性运动在X-射线晶体学研究中所表现出来的是电子密度的水平低,甚至在某些情况下看不到电子密度的存在。产生这样的运动的区域通常在晶体学中被表述为柔性(flexibility)运动或无序运动或无序(disorder)。核磁共振实验对于这样的区域的测定可以作为一种互补,因为核磁共振实验可测出这些区域的各种不同的构象,通过理论计算也可以计算出这些分立的或集合性运动这叫作分子动力学模拟。分子动力学模拟。分子动力学模拟已经表明,每一个分立的残基的集合性运动仅在皮秒(10-12 秒)的时间尺度,而环区域的运动在纳秒(10-9

3、秒)的尺度。这种运动对于许多蛋白质的功能是非常重要的。象电子转移和配基结合或释放反应均以这样的时间尺度发生,并通常伴随着蛋白质原子的运动。例如,当肌红蛋白呼吸时,通道在溶剂和被包埋在分子内部的结合部位之间打开,以允许氧原子在纳秒的时间尺度范围与肌红蛋白结合或者释放出来。除了蛋白质中原子小的呼吸运动之外,在分子的功能态之间也会发生大的构象变化。不同的pH 和配基的存在和缺失以及环境中的微小的变化,往往能够稳定蛋白质的不同构象态。这些构象变化可以是活性部位的氨基酸侧链的构象变化到环区域的运动等。同时结构域之间的相对取向和寡聚蛋白中四级结构也会发生变化,这样的运动通常是与功能相关的。例如酶的催化,肌

4、肉运动和能量转换等。真核细胞周期的五个相(G0, G1, S,G2 和M 相)例例1:细胞周期调节蛋白激酶的构象变化:细胞周期调节蛋白激酶的构象变化在S 相,DNA 合成,DNA 被复制并且染色体翻倍。在M 相,有丝分裂父代细胞的二倍化染色体通过有丝分裂的纺锤体分开,这样每个子代细胞接收到相同组分的染色体。 一个细胞分裂的完整周期是M G1 S 和G2。通过G1 S 和G2 相,细胞的蛋白质合成机器大分子和细胞器被建立起来,同时细胞的体积增大。在有丝分裂时,染色体和细胞质被分为两个相等的部分。此外,还有一个静止相G0 相,发生在细胞的未分裂状态。由cyclin 的降解对CDKs 的调节细胞周期

5、的进程取决于一系列的叫作cyclin依赖的蛋白激酶(cyclin-dependent protein kinases, CDKs)的连续激活作用。图中显示两种类型的cyclin-CDK 复合物,一种是触发S 相,另一种触发M 相。在这两种情况下CDK 的激活需要与cyclin 的结合,它们的非活性依赖于cyclin的降解在脊椎动物的细胞中至少有四种不同CDKs ,控制着细胞周期的活动。不同的催化亚基都属于密切相关的基因家族,不同的CDK 的一个或几个cyclin 分子都是该家族的成员。CDKs 作为一个延迟开关,控制着从G1 相到S 相从G2 相到M 相以及所有构成细胞周期的其它步骤人的体细胞

6、中调制DNA复制的CDK2-cyclin A的结构提供了详细的结构信息以及cyclinA 激酶的功能。Cyclin A 的功能片段的晶体结构于1995 年由Louise Johnson 实验室解出,非活性的CDK2 的结构1993 年已由Sung-hoKim 实验室解出,活性的cyclin A 片段与CDK2 复合物的结构也于1995年由Nicola Pavletich 实验室解出。通过对这些结构的分析和结构比较,揭示出cyclin A 是如何结合到CDK2 上,并如何在CDK2 的活性部位引起大的构象变化,使CDK2 蛋白质从一种非活性的状态转变为活性状态的。而在此过程中 cyclin A

7、的结构则没有发生构象变化cyclin A 依赖型激酶CDK2 的结构cyclin A依赖型激酶CDK2 有两个结构域,N-端结构域由一段螺旋折叠片组成,在螺旋中PSTAIRE的氨基酸顺序(红色)在所有的CDKs 蛋白激酶中都是高度保守的;C-端结构域主要由螺旋组成,并含有一段柔性的环区域称作T-loop (黄色)环区域,含有一个苏氨酸残基,在完全活性的酶中该苏氨酸残基被磷酸化。Cyclin A 的结构Cyclin A 活性片段残基173-432 的结构由两个非常相似的结构域构成。每个结构域都由五段螺旋组成。该活性片段的作用几乎与完整的cyclin A 分子的作用相同。在所cyclin A 中第

8、一个结构域具有十分保守的氨基酸顺序被称作Cyclin-box ,而第二个结构域的氨基酸顺序则不相同。因此尽管cyclin A 片段的两个结构域结构几乎相同但仅有一个Cyclin-box 序列。活性的CDK2 蓝色和cyclin A 复合物的结构在cyclin A-CDK2 复合物中,主要是Cyclin A 与CDK2 中的PSTAIRE螺旋和T-loop 相互作用,cyclin-box 螺旋2-6 与CDK2 的PSTAIRE 深红色螺旋和T-loop 黄色作用。在该复合物中,cyclin A 的结构与单个cyclin A 是相同的,而CDK2 的结构则发生了很大的构象变化,包括PETAIRE

9、 螺旋T-loop 和ATP 的结合部位(浅红色)。整个N 端结构域相对于C端的结构域的取向发生了变化,此外PSTAIRE 螺旋向CDK2 的活性部位靠近并旋转了90, 以便主要的催化残基Glu 51 指向裂缝,而不是象在单个的CDK2 结构中那样远离此裂缝。CDK2 与cyclin A 结合的构象变化一旦与cyclin A结合,PSTAIRE 螺旋橙色转动90, 并改变位置以使得Glu 51变为指向活性部位。该PSTAIRE螺旋的一些主链原子由于这种一致性运动位移了8.0 的距离。T-loop发生了大的位置重排某些环区域上的氨基酸残基的位移可达20 。左图:在非活性态,PSTAIRE 螺旋红

10、色的取向使Glu 51 指向远离ATP 的结合部位,而T-loop 封住了与底物的结合部位,以阻止蛋白结合到CDK2 上。右图: 在活性的cyclin A-CDK2 复合物结构中,PSTAIRE 螺旋发生了重新定向以使得Glu51 残基指向活性部位并与另一个与催化有关的残基Lys 33 形成盐键,T-loop改变了构象并与另一个残基Asp 145 一起与活性部位中的镁离子配位,此时底物的结合部位被打开,蛋白可以结合底物。cyclin-CDK2 复合物可以磷酸化Ser/Thr 残基并进而激活所结合的蛋白。在自由CDK2 T-loop结构中的螺旋在复合物中变为一条 链。cyclin 结合引起结合引

11、起CDK2 的结构变化的结构变化(a)活性部位位于N 端结构域(蓝色)和C 端结构域(紫色)之间的裂缝中,在非活性状态此活性部位被T-loop 所封闭。(b)在活性的cyclin 结合状态的CDK2结构中,Tloop的结构发生了变化,活性部位被打开,Thr 160 适合于磷酸化.由于cyclin A 的结合所引起的CDK2 的构象变化,不仅暴露了活性部位的裂缝以使ATP 和蛋白底物能够与之结合,而且活性部位的残基发生了重排,以形成酶的催化作用。此外Thr 160 被暴露出来,并准备被磷酸化以提高催化活性。简而言之蛋白质结构的柔性调节了CDK 家族的酶活性,因而控制了细胞周期。Structura

12、l basis of inhibition of CDK-cyclin complexes by INK4 inhibitorsPhilip D. Jeffrey, Lily Tong, and Nikola P. Pavletich Cellular Biochemistry and Biophysics Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USAGenes Dev. 2000 14: 3115-3125Th

13、e cyclin-dependent kinases 4 and 6 (Cdk4/6) that drive progression through the G1 phase of the cell cycle play a central role in the control of cell proliferation, and CDK deregulation is a frequent event in cancer. Cdk4/6 are regulated by the D-type cyclins, which bind to CDKs and activate the kina

14、se, and by the INK4 family of inhibitors.The structure reveals that p18-INK4c inhibits the CDKcyclin complex by distorting the ATP binding site and misaligning catalytic residues. p18INK4c also distorts the cyclin-binding site, with the cyclin remaining bound at an interface that is substantially re

15、duced in size. These observations support the model that INK4 binding weakens the cyclins affinity for the CDK. This structure also provides insights into the specificity of the D-type cyclins for Cdk4/6. Overall structure of the p18Cdk6K-cyclin complex and comparison with Cdk2cyclinA (A)Schematic v

16、iew of p18Cdk6K-cyclin. p18 is shown in yellow, Cdk6 in cyan, K-cyclin in purple. The T loop and PSTAIRE elements of Cdk6 are highlighted in red, and the helices of the first cyclin repeat are labeled. N and C termini are labeled where visible. The p18Cdk6 and K-cyclinCdk6 interfaces do not overlap

17、and lie on opposite sides of the kinase, burying a total of 4350 2 of surface area. (B) Top view of the p18Cdk6K-cyclin complex, approximately orthogonal to view in A. The ankyrin repeats of p18 are numbered. The PSTAIRE helix is central to the Cdk6K-cyclin interface, but the T loop packs on the oth

18、er side of the kinase. (C) View of Cdk2cyclinA complex superimposed on the C lobe of Cdk6 in the same orientation as in A. Both the PSTAIRE helix and T loop, in red, pack against cyclinA.(D) View of superimposed Cdk2cyclinA complex from same viewpoint as B.The Cdk6 structure in the p18Cdk6K-cyclin c

19、omplex has a large number of conformational changes compared with the active conformation of Cdk2 (Jeffrey et al.1995; Fig. 2C,D) or of other protein kinases. In this inactiveCdk6 structure, the N and C lobes are rotated 13away from each other, resulting in the misalignment of ATP-binding residues.

20、The N-lobe PSTAIRE helix, which contains an invariant active site residue (Glu 61),is displaced by 4.5 away from the active site and is rotated by 16. A C-lobe loop (T loop, residues 162182), which contains the threonine that is phosphorylated(Thr 177) on the full activation of the kinase (Morgan 19

21、95; Russo et al. 1996) and that forms part of the polypeptide substrate-binding site (Brown et al. 1999), is displaced by 30 . Finally, an additional loop at the back ofthe catalytic cleft (residues 99102), which would hydrogen bond to ATP, is displaced by several ngstroms.The Cdk2cyclinA structure

22、(Jeffrey et al. 1995) showed that cyclinA binding to Cdk2 caused conformational and positional changes in the PSTAIRE helix and T loop and that these changes activated the kinase bycorrectly aligning certain active site residues and reorganizing the polypeptide substrate binding site. In the p18Cdk6

23、K-cyclin complex, not only does the K-cyclin fail to carry out most of these conformational changes but p18 causes the misalignment of additional residues involvedin ATP binding and catalysis.Structure of the Cdk6K-cyclin interface(A) The PSTAIRE helix of Cdk6 is a central feature of the Cdk6K-cycli

24、n interface. Theviewpoint shown corresponds approximately to that in B. Three sets of interactions are shown: hydrogen bonds between the Cdk6main-chain preceding the PSTAIRE helix and the conserved LysGlu pair of K-cyclin (K106, E135); the conserved Ile 59 of Cdk6 inserts into a hydrophobic pocket i

25、n K-cyclin; residues at the end of the PSTAIRE helix, one turn longer in Cdk4 and Cdk6 than in Cdk2, interact with residues on the N-terminal helix of K-cyclin and may play a role in cyclinCDK specificity. (B) Surface representation of p18Cdk6K-cyclin complex illustrating the minimal interactions be

26、tween K-cyclin and the Cdk6 C lobe. p18 is colored yellow, theCdk6 N lobe is cyan, the Cdk6 C lobe is blue, and the K-cyclin is purple. The only contacts between K-cyclin and the C lobe of Cdk6 arise from interactions with the N-terminal helix of K-cyclin. (C) Surface representation of Cdk2cyclinA i

27、n the equivalent orientation as that in A, showing significantly greater interactions between the C lobe of the Cdk2 and the cyclinA, giving rise to a much more extensive cyclinCDK interface.The ATP-binding site of p18Cdkl6K-cyclin and Cdk2cyclinA. Active site residues implicated in ATP bindingand c

28、atalysis are displaced in the p18Cdk6K-cyclin complex relative to the active Cdk2cyclinA conformation. Cdk2and Cdk6 were superimposed on their Clobes. Cdk6 is shown in cyan, p18 in yellow, Cdk2 in gray. Movement of activesite residues is indicated by red arrows.p18 displaces the N lobe relative to t

29、he Clobe, causing the hydrophobic residues (Ile19, Val 27, Ala 41, Leu 152) that sandwichthe adenine ring of ATP to move by up to4.5 . The p18 inhibitor also distorts theedge of the active site via Phe 82, affectinghydrogen bonding interactions with theedge of the ATP ring. The related shift ofthe P

30、STAIRE helix on the other side of theactive site displaces an active site residue(Glu 61). The T loop of Cdk6 diverges fromthat of Cdk2 between Phe 164 and Val 181The INK4-induced conformational changes in Cdk6 would interfere with the binding of ATP and polypeptide substrate and would also misalign

31、 any weakly bound substrates with respect to phosphotransfer.The differences with respect to Cdk2cyclinA arise from contacts at the C terminus of the PSTAIRE helix caused by a three residue insertion in Cdk6 (residues 7072) resulting in one additional helical turn of 3.10 type. The longer PSTAIRE he

32、lix of Cdk6 would collide with the N-terminal helix of cyclinA (Thr 70 and Phe 71 of Cdk6 would clash with Met 189 and Tyr 185 of cyclinA).The longer Cdk6 PSTAIRE helix is accommodated in K-cyclin by a small shift of the N-terminal helix relative to cyclinA and by the substitution of smaller amino a

33、cids (Asn 24 of K-cyclin instead of Tyr 185 of cyclinA). This results in contacts between Thr 70 and Phe 71 in the Cdk6 insertion and Asn 24, Ile 28, and Phe 32 of K-cyclin.The structure of Cdk6 in the p18Cdk6K-cyclin complex differs from the structure of cyclinA-activated Cdk2 in the orientation of

34、 the N and C lobes of the kinase and in the positions of the PSTAIRE helix and T loop. Comparedto the Cdk2cyclinA complex, the kinase N and C lobes of the p18Cdk6K-cyclin complex are rotated by13 about an axis that passes through the back of the catalytic cleft and is approximately perpendicular to

35、the plane of the ATP that would bind there.The rotation of the N lobe and the PSTAIRE helix away from the C lobe is also associated with the T loop not adopting the conformation needed for substrate binding and kinase activity. In the Cdk2cyclinA complex, the T loop makes multiple contacts with the

36、PSTAIRE helix, the cyclin, and other parts of the C lobe. As these contacts would not be possible in p18Cdk6K-cyclin because of the misalignment of the lobes and PSTAIRE helix.Despite the overall similarities in the N lobe-cyclin interactions between the inhibited p18Cdk6K-cyclin complex and the act

37、ive Cdk2cyclinA complex, there is a large difference in the position and orientation of the cyclin relative to the kinase C lobe. When the two complexes are compared by superimposing their CDK C lobes, K-cyclin is rotated by 40, and its center of gravityis shifted by 15 relative to cyclinA. This is

38、caused in part by the rotation between the kinase N and C lobes in p18Cdk6K-cyclin and in part by the rotation of the PSTAIRE helix relative to the N lobe. The shift in K-cyclinleads to a lack of significant contacts between K-cyclin and the C lobe and T loop of Cdk6 (Fig. 4B). In the Cdk2cyclinA co

39、mplex, there are extensive contacts between the first cyclin repeat and the T loop and between the N-terminal helix and other parts of the Cdk2 C lobe (Fig. 4C; Jeffrey et al. 1995). In the inhibited Cdk6K-cyclin complex, there are no contacts with the T loop and only a few minor contacts with the C

40、 lobe.Conformation of Cdk6Schematic representation of the different conformations of the CDK. CDKs undergo extensive conformational changes onbinding of activating or inhibiting subunits. The major determinants of activity are the positions and conformation of the PSTAIREhelix and T loop, as well as

41、 the relative disposition of the kinase N and C lobes. The PSTAIRE helix adopts a position further awayfrom the catalytic cleft in inactive CDKs (labeled as out) than in active CDKs (in). The PSTAIRE helix conformation correlates withthe location of a conserved active site residue (Cdk2, Glu 51; Cdk

42、6, Glu 61) either inside or outside the catalytic cleft.例二:肽与钙调蛋白例二:肽与钙调蛋白(Calmodulin)的结合的结合钙调蛋白是一个含有148 个氨基酸残基的钙结合蛋白,它与钙依赖性的信号通道的过程有关。钙调蛋白可结合到多种蛋白中,像激酶钙泵蛋白,以及一些运动性蛋白等,以调节这些蛋白的活性。这些蛋白的钙调蛋白结合区域大约由20 个相邻的残基组成,虽然它们的氨基酸顺序变化很大,但它们都有形成螺旋的强烈倾向,单个的和与多肽结合的钙调蛋白的结构表明,多肽的结合引起了钙调蛋白分子中大的构象变化。Calmodulin (CaM) (an

43、abbreviation for CALcium-MODULated proteIN) is a calcium-binding protein expressed in all eukaryotic cells. It can bind to and regulate a number of different protein targets, thereby affecting many different cellular function.CaM mediates processes such as inflammation, metabolism, apoptosis, smooth

44、 muscle contraction, intracellular movement, short-term and long-term memory, nerve growth and the immune response. CaM is expressed in many cell types and can have different subcellular locations, including the cytoplasm, within organelles, or associated with the plasma or organelle membranes. Many

45、 of the proteins that CaM binds are unable to bind calcium themselves, and as such use CaM as a calcium sensor and signal transducer. CaM can also make use of the calcium stores in the endoplasmic reticulum, and the sarcoplasmic reticulum肌浆网. CaM undergoes a conformational change upon binding to cal

46、cium, which enables it to bind to specific proteins for a specific response. CaM can bind up to four calcium ions, and can undergo post-translational modifications, such as phosphorylation, acetylation, methylation and proteolytic cleavage, each of which has potential to modulate its actions. Calmod

47、ulin can also bind to edema factor toxin from the anthrax炭疽 bacteria.与肽结合的钙调蛋白的构象变化(a) 在自由状态下钙调蛋白是一个由两个结构域(红色和绿色)组成的哑铃状分子。每个结构域都有两个与钙结合的EF 手(EF-hand) (b)在结合肽的状态, 螺旋连接子-helix linker 已被切开,分子的两端紧靠在一起,并形成一个致密的球状复合物。每个结构域的内核结构基本上没有变化,结合肽形成一段螺旋,每个结构域内含有两个EF 手,每个EF 手结合一个钙离子。这两个结构域显然在空间上是互相靠近的,并在 螺旋连接子的两端分开

48、。当钙调蛋白与它的配基结合时实际上仅有5 个基团改变了构象。这是螺旋连接子中的5 个保守残基,这5 个残基发生了解旋并形成一个环区域,虽然在此环区域之后仍是一个螺旋,但其方向发生了很大的变化。第二个螺旋以完全不同的取向与第一个螺旋靠近多肽,构象如此小的局部变化引起了如此大的结构域之间的变化,这是由配基引起蛋白变化的最大的一种蛋白。There are 4 helix-loop-helix (EF-hand) motifsUpon binding of some target sequences to calmodulin, the two domains come together to for

49、m a hydrophobic channelCalmodulin is only active when all four sites are filled. The binding of the four Ca+ ions is cooperative Mechanism: Calcium is bound via the use of the EF hand motif, which supplies an electronegative environment for ion coordination. After calcium binding, hydrophobic methyl

50、 groups from methionine residues become exposed on the protein via conformational change. This presents hydrophobic surfaces, which can in turn bind to Basic Amphiphilic两性的 Helices (BAA helices) on the target protein. These helices contain complementary hydrophobic regions. The flexibility of Calmod

51、ulins hinged region allows the molecule to wrap around its target. This property allows it to tightly bind to a wide range of different target proteins. Calmodulin wraps around a target domain of some proteins only after binding Ca+. Other proteins have bound calmodulin as part of their quaternary s

52、tructure, even in the absence of Ca+. In either case, a conformational change induced by binding of Ca+ to calmodulin alters the activity of the target protein.CAM is highly conserved across all eukaryotesOnce in the cytosol, the Ca+ typically binds to a small protein, calmodulin. Once four Ca+ bind

53、 to calmodulin, it activates specific proteins inside the cell, such are certain protein kinases.Ca2+-independent binding of calmodulin to its target proteins by contrast, uses a consensus sequence (IQxxxRGxxxR) called an IQ motif. Some proteins bind calmodulin through their IQ motifs at low concent

54、rations of Ca2+ .A subsequent increase in the Ca2+ concentration induces aconformational change in the bound calmodulin, regulating the activity of the target protein. HowdoesCalmodulinbindtoproteins?A transformation of the corresponding IQ12 region of scallop muscle myosin-II. Martin & Bayley, 2002

55、. Disease states characterized by unregulated growth, such as cancer, are correlated with elevated levels of Ca+-bound CaMSome Anti-calmodulin DrugsCAMs hydrophobic surface can bind different aromatic moleculesCalmodulin 1 (phosphorylase kinase) is a protein that in humans is encoded by the CALM1 ge

56、ne.Calmodulin 1 is the archetype of the family of calcium-modulated (calmodulin) proteins of which nearly 20 members have been found. They are identified by their occurrence in the cytosol or on membranes facing the cytosol and by a high affinity for calcium. Calmodulin contains 148 amino acids and

57、has 4 calcium-binding motifs. Its functions include roles in growth and the cell cycle as well as in signal transduction and the synthesis and release of neurotransmitters. Calmodulin 1 has been shown to interact with AKAP9,3 TRPV1, 4 Androgen receptor, 5 IQGAP167 and PPEF1Calmodulin 2 (phosphorylas

58、e kinase) is a protein that in humans is encoded by the CALM2 gene, CALM2 has been shown to interact with AKAP9Calmodulin3 (phosphorylase kinase) is a protein that in humans is encoded by the CALM3 gene Calmodulin-like protein 1Calmodulin-like protein 2Calmodulin-like protein 3Calmodulin-like protei

59、n 4Calmodulin-like protein 5Calmodulin-like protein 6 例三:例三:Serpin 抑制丝氨酸蛋白酶的作用抑制丝氨酸蛋白酶的作用1 抗胰蛋白酶属于在血浆中发现的丝氨酸蛋白酶抑制剂家族的成员,统称叫作Serpin 。该家族的其它成员是抗凝血酶(antithrombin) 和血浆酶原激活子抑制剂(Plasminogen Activator Inhibitor, PAI) ,两者都是血液凝集连锁反应的调节子。所有的Serpin 分子都是同源的,且都有非常相似的三维结构。这些Serpin 分子在各种不同状态下的一般折叠是相同的,但是柔性环区域的位置则变

60、化很大。卵白蛋白的Serpin 折叠由三个反平行的 折叠A B 和C 构成。红色区域是Serpin 相应的活性部位,该部分像一个结构的把手一样穿出卵白蛋白,可把非切断形式的卵白蛋白结构考虑为规范的Serpin 的结构。 折叠片A ( -sheet A) 有五段 链,柔性的环区域起始于折叠片A 的链5 的末端,然后形成一段位于分子顶端的螺旋,并靠近 折叠片C 的边缘,最终在折叠片B 的起始链结束。三种状态下活性部位环区域红色的图解三种状态下活性部位环区域红色的图解(a)活性形式下,环区域从分子的主要部分穿出,与丝氨酸蛋白酶的活性部位发生作用(b) 作为抑制蛋白酶的结果,Serpin 分子在环区域

61、的活性部位的尖端被切断,被切断的形式中环区域的N 端把它自己插入到5 和 15 之间,并在折叠片的中部形成一条长的 链(红色)。(c) 在最稳定的状态(潜伏态),该形式是无活性的。环区域的N 端部分形成一个被插入的 链,其余的残基在 折叠片的另一端形成一个环区域。进一步说,在环区域中没有任何螺旋延伸到分子主体的外部,以准备插入到凝血酶的活性部位。活性形式到隐性形式(latent form) 的转变包含了结构中由一个环转变为一段长的 链插入到折叠片的中间。为了使得这种结构的转变得以实现,在 折叠片中的相邻的 链首先必须要被分开以允许新的链的插入,这牵涉到在一个稳定的 折叠片中的两条相邻的链之间的

62、氢键的断裂和分子内部的疏水堆积的接触相互作用的改变。当新的 链插入以后,形成新的氢键和疏水堆积相互作用,这种在 结构中的主要变化,在serpin 结构被测定之前,是人们所预料不到的,在许多其它的系统中也没有观察到这种现象。肺气肿(emphysema)的发生常常是与serpin 抗胰蛋白酶的专一性突变相关的。突变的serpin 分子在肝内产生聚集,引起血浆中的抗胰蛋白酶的缺乏,进而造成肺中的弹性蛋白(elastin)纤维被弹性蛋白酶的酶解的增加。研究表明serpin 在胞内聚集的形成,是由于突变的抗胰蛋白酶的折叠速度极慢,导致折叠中间物的累积形成聚集。这是不完全折叠或错误折叠的分子导致病变或严重

63、疾病的一个例子。通过对这些由蛋白质分子的折叠和错误折叠过程的了解,人们可以进行相应的药物设计去治疗这些疾病。例四:分子的例四:分子的R 态和态和T 态间的别构蛋白效应子分子开关态间的别构蛋白效应子分子开关早在1963 年J. Monod, J.-P. Changeaux 和F. Jacob 就提出了别构控制的理论。该别构控制的理论提供了对于象酶的反馈抑制配基与蛋白的协同性结、氧与血红蛋白的结合等的分子间相互作用的理论依据。别构理论有下列主要的特性:由别构效应子分子作用造成的协同底物结合和蛋白活性修饰与蛋白质结构中的两个或多个构象态相关,底物和效应子在蛋白质的不同部位上结合,因此两者没有立体化学

64、的关系,因而被称之为别构(不同的形状)。别构理论预测出这些蛋白是由几个对称排列的亚基组成的,两种态之间是由于亚基的排列不同和它们之间的键的数目不同。一种态是亚基由强键所限制,这样就不能满足与底物结合所需要的结构变化,与底物的结合能力弱,称作Tense(T)态,另外一种态与之相反称作Relaxed(R)态。一致性模型(concerted model)的模型,进一步假定分子的对称是守恒的,因此所有的亚基的活性要么是同等地低或者是同等地高,即所有的结构变化是一致的。连续模型(sequential model)。 该模型认为在结构中每个亚基可独立地在底物的结合部位变化,它的三级结构在此模型中亚基与它的

65、结合配基的三级结构变化改变了这个亚基和与它相邻的亚基的相互作用,进而导致另一个亚基的活性部位的变化。例如由配基对酶的结合引起酶的构象变化使酶由非活性状态变为有活性。别构效应模型别构效应模型磷酸果糖激酶磷酸果糖激酶(Phospho fructo kinase, PFK)的别构效应的别构效应磷酸果糖激酶是糖酵解路径中的一个关键的调节酶,它使葡萄糖分解以产生ATP 。该酶催化糖酵解路径中果糖-6-磷酸, F6P 的ATP磷酸化生成果糖-1,6-二磷酸的前期步骤。磷酸果糖激酶可被糖酵解途径中最后一步所产生的产物-磷酸烯醇丙酮盐酸(phosphoenolpyruvate, PEP)所抑制,也可被PEP

66、的类似物,例如2-磷酸羟乙酸盐(phosphoglycolate)所抑制一个四聚体的大肠杆菌的PFK 的每个亚由320 个氨基酸组成,排列为两个结构域:一个大结构域一个小结构域这两个结构域都有一个/ 结构。从多肽链的氨端到羧端,螺旋被标记为从A 到M, 链标记为1 到11。底物和效应子分子的结合部位以灰色标记。一个亚基的效应子部位通过螺旋F 和链6 之间的6-F 环连接到二体的另一个亚基的活性部位。亚基被配对连接为两个二体。磷酸果糖激酶的四级结构及其相互作用磷酸果糖激酶的四级结构及其相互作用(a)四个亚基配对排列为两个二体A-B(蓝色)和C-D(红色或绿色), 二体内的亚基相互用紧密,而两个二

67、体之间互相紧密地堆积在一起。在R 态和T 态时的二体堆积相互作用有差异,在R 态(红色表示的C-D 二体)和T 态(绿色)下二体的相对取向转动了7。(b)在T 态,二体紧密地堆积在一起并,且在两条 链之间有直接的氢键,两条链一条来自于A-B 二体(蓝色),另一条来自于C-D 二体(绿色) ,氢键以黄色表示。(c)在R 态,二体被分开在两条链之间形成了一个裂缝,缝内由水分子所充满(红色)这些水分子在二体之间形成氢键水桥,把来自于两个二体的两条 链连接起来。磷酸果糖激酶活性磷酸果糖激酶活性部位的构象变化部位的构象变化(a) 在活性R 态底物果糖-6-磷酸, F6P (红色)与小 螺旋(橙色)上精氨

68、酸残基Arg162 形成盐桥,此盐桥启动底物与酶的结合。(b) 在非活性的T 态,螺旋被部分地解旋并改变了取向。Arg162 远离底物的结合部位,一个负电荷的谷氨酸残基Glu161 指向底物分子的磷酸结合部位,Glu161 的负电荷与F6P 磷酸基团之间的斥力阻止了结合导致了亲和力。与活性R 态相比下降了数千倍。Monod 的理论:的理论:四聚体的酶以平衡的形式存在于催化活性的R 态和非活性的T 态之间。在这两种态中亚基的三级结构有差异,与分子的四级结构的差异也密切相关。底物F6P 偏好地与R 态结合因此将此平衡向位移到R 态,由于一致性的机理,一个F6P 与第一个亚基的结合提供了使另外三个亚

69、基向R 态的平衡,因此具有了F6P 结合和催化的协同性。ATP 与两种态都可结合,所以不会使平衡产生位移,因此也就没有ATP 结合的协同性。抑制剂PEP 偏好地与T 态形式的分子的效应子结合部位结合,结果平衡被推向非活性的一边;相反激活子ADP 偏好地与R 态形式的效应子结合部位结合,导致平衡被推向活性的R 态一边。1 酶由四个相同的亚基组成,每个亚基有一个与配基的结合位点2 亚基能够打开和关闭两个处于平衡的固有的构象态R 态和T 态3 在每个四体分子中的这些态之间的转换是一致的,即每个分子中的四 个亚基处于相同的状态或者R 态或者T 态4 两态对ATP 有着相同的亲和性,但对底物F6P 别构

70、效应子ADP 和抑制剂PEP 的亲和性则不同,由于这些亲和性的差异,配基结合能够使R 态和T 态之间平衡产生位移,朝哪个方向位移取决于与什么样的配基结合。作业:磷酸果糖激酶(Phospho fructo kinase, PFK)和底物复合物的结构并阐明其功能血红蛋白的结构与功能血红蛋白的结构与功能1, Some fundamental concepts2, the structure and function of myoglobin and hemoglobinA molecule bound reversibly by a protein is called a ligand. A lig

71、and may be any kind of molecule, including another protein.A ligand binds at a site on the protein called the binding site, which is complementary to the ligand in size, shape, charge, and hydrophobic or hydrophilic character. The molecules acted upon by enzymes are called reaction substrates rather

72、 than ligands, and the ligand-binding site is called catalytic site or active siteThe binding of a protein and ligand is often coupled to a conformational change in the protein that makes the binding site more complementary to the ligand, permitting tighter binding. The structural adaptation that oc

73、curs between protein and ligand is called induced(诱导契合).KahasunitsofM-1,ahighervalueofKacorrespondstoahigheraffinityoftheLigandfortheproteinKd is equivalent to the molar concentration of ligand at which half of the available ligandbinding sites are occupied. The protein is said to have reached half-

74、saturation with respect to ligand biendingThefamilyofglobin(珠蛋白珠蛋白):肌红蛋白肌红蛋白:myoglobin-oxygenstorageprotein血红蛋白血红蛋白:hemoglobin-oxygentransportprotein (twocopiesofeachglobinandglobinincomplexwith4hemes)Roleoftheglobinsinoxygentransportandstorage.hemoglobinmyoglobinHeme(血红素)血红素)Thestructuresofporphyri

75、nsHeme is found in a number of oxygen-transporting proteins, such as theCytochromes that participate in oxidation-reduction reactionMyoglobin The structure of myoglobinMyoglobin (Mr 16,700) is a single polypeptide of 153 amino acide residues with one molecule of heme. The polypeptide is made up of 8

76、 helical segments connected by Bends.About 78% of the amino acide residues are found in these helices.8 helical segments are named A-HHis93 (His F8) coordinated to theHeme groupThe bends are designated AB,CD,EF,FGThe heme is bound in a pocket made upLargely of E and F helices, although Amino residue

77、s from other segments ofThe proein also participate The structure of myoglobin The structure of myoglobin(a)Oxygen binds to heme with the O2 axis at an angle, a binding conformation readily accommodated by myoglobin. (b) Carbon monoxide binds to free heme with the CO axis perpendicular to the plane

78、of the porphyrin ring. When binding to the heme in myoglobin, CO is forced to adopt a slight angle because the perpendicular arrangement is sterically blocked by His E7, the distal His. This effect weakens the binding of CO to myoglobin. (c) Another view (derived from PDB ID 1MBO), showing the arran

79、gement of key amino acid residues around the heme of myoglobin. The bound O2 is hydrogen-bonded to the distal His, His E7 (His64), further facilitating the binding of O2.DynamicsofoxygenreleasebymyoglobinThebendingofO2tothehemeinmyoglobindependsonmolecularmotion,or“breath”inproteinstructure.Onemajor

80、routeisprovidedByrotationofthesidechainofdistalHis(His64).Therate-limitingprocessinoxygenreleaseistheopeningofapathwayfortheO2moleculetoescapefromthehemepocket.Oxygenmayspendtimerattlinginitscage-andperhapsbeingrecaptured-beforethetertiarystructureofthemyoglobinshiftsenoughtoletitescapeHemoglobinHem

81、oglobin (Mr 64,500) is a tetrameric proteinContaining four heme groups, one associated witheach polypeptide chain. Adult hemoglobin containsTwo types of globin, two c chains (141 residues) and two chains (146 residues). Fewer than half of the amino acide residues in poly-Peptide sequences of and sub

82、units are identical,Their three-dimensional structures are very similar,And also similar to that of myoglobin In a multisubunit protein, a conformational change in one subunit often affects the conformation of other subunits. Interactions between ligands and proteins may be regulated, usually throug

83、h specific interactions with one or more additional ligands.These other ligands may cause conformational changes in the protein that affect the binding of the first ligand. Event though their amino acid sequences are identical at only 27 positions, their three-dimensionalstructures are very similarT

84、heaminoacidsequencesofwhalemyglobinandtheandchainsofhumanhemoglobinThe 11 (22) interface involves more that 30 residues, the 12 interface involves 19 residues. Hydrophobic interactions predominate, there are also manyHydrogen bond and few ion pairs There are two major conformations of hemoglobin: th

85、e R state and the T state.Oxygen bending stabilize the R state and T state is the predominant conformationOf deoxyhemoglobinSome ion pairs between 1and 2 (2 and 1) interface and stabilize the T state of deoxyhemoglobinThe binding of O2 to a hemoglobin subunit in the T state triggers a change in Conf

86、ormation to R state. When the entire protein undergoes this transition, the Structures of individual subunits change little, but subunit pairs slid past each other and rotate, narrowing the pocket between the subunits.Thelooserconformationiscalledrelaxed(R).Thetighterconformationiscalledtense(T).The

87、energypriceforthechangefromtheTstatetotheRstateispaidbythebindingofO2tothemolecule.OncetheO2hasdeparted,themoleculewillnaturallyfallbackintoitslower-energydeoxyconformation(T).ThechangeinhemoglobinquaternarystructureduringoxygenationThr 38 Thr 41Pro 44His 97 (F8)MechanismoftheT-Rtransitioninhemoglob

88、in.HemoglobinbindingO2inlung(highO2)andleaseitintissue(lowO2)Hemoglobinsolvestheproblembyunder-GoingfromalowaffinitystateTtoahighaffinitystateR(The first molecule of O2 that interacts with deoxyhemoglobin binds weakly, because it binds to a subunit in T state. Its binding leads to conformational cha

89、nges that are communicated to adjacent subunits, making it easier for additional molecules) Allostericprotein:The binding of a ligand to one site of the protein affects the binding properties of another site on the same protein.The conformational change induced by the modulator interconvert more-act

90、ive and less-active forms of the protein. There are two Interaction: homotropic (同促同促)and heterotropic ( 异促异促)CooperativeconformationalchangesdependonvariationsinthestructureStabilityofdifferentpartsofaproteinSeveraltheorieshavebeendevelopedtodescribeallosterictransitions.Theymaybegenerallygroupedin

91、tothefollowingthreeclasses:1.Sequentialmodels:TheprototypeforthemodelsthatdescribeallosterictransitionsisthesequentialmodelofKoshland,Nemethy,andFilmer(KNF)2.Concertedmodels:AccordingtothetheoryofMonod,Wyman,andChangeux(MWC)3.Multistatemodels(a)Concertedmodels(b)Sequentialmodelscharacterizedbytheco-

92、existenceofmoleculeswithsomesubunitsintheweak-bindingstateandsomeinthestrongMultistatemodelsTheshiftisaconcertedoneArecentmodelforthecooperativetransitionofhemoglobin.Adapted from G. K. Ackers et al., Science (1992) 255:54-63. thechangesintertiarystructurethataccompanyoxygenbindingcanbetoleratedupto

93、acertainpointbeforetheT-Rswitchoccurs.Specifically,whenever one site is occupied on each of the two - dimers, the molecule as a whole adopts the R quaternary structureHill equation: equation 5-16A plot of log /(1- ) versus log L is called a Hill plotThe slope of a Hill plot is denoted by nH, the Hil

94、l coefficientP+nLPLnForaproteinwithnbindingsites,theequilibriumofEquationbecomesnH-Hillcoefficient:MeaurethedegreeofCooperation.nH=1:noncooperationnH=n:theoreticallimitnH1:negativecoope-rativityOtherAllostericEffectorsbesidesO2:1) H+ 2) CO 3) CO2 4) BPGBohreffect:TheeffectofPHandCO2concentrationonth

95、ebindingandReleaseofoxygenbyhemoglobinTheoverallreactionmaybewrittenHb-4O2+nH+Hb-nH+4O2(wheren2)Oxygen and H+ are not bound at the same sites in hemoglobin. Oxygen bind at the iron atoms of the hemes, wheeas H+ binds to any several amino acid residues in the protein.MechanismoftheBohrEffect-Certain

96、proton binding sites in hemoglobin have a higher affinity in the deoxy form than in the oxy form. A major contribution comes from histidine residue 146 at the C-terminus of each chain. In the deoxy form, His 146 can make a salt bridge with asp 94 in the same chain, if His 146 is protonated. His 146

97、has an abnormally high pKa because the salt bridge stabilizes the proton against dissociation. In the oxy form, however, this salt bridge simply cannot be formed, so the pKa falls to its normal value of about 6.5. Consequently, at blood pH (7.4), His 146 is largely unprotonated in oxyhemoglobin. The

98、refore, a high concentration of protons, which favors protonation, also favors the deoxy form and thus promotes the release of oxygen.COCO2BPG (2,3-二磷酸甘油酸二磷酸甘油酸)binds at a site distant from the oxygen-binding site and regulates the O2-binding affinity of hemoglobin in relation to the pO2 in the lung

99、s.OxygenBindingtoHemoglobinIsRegulatedby2,3-Bisphosphoglycerate(BPG)2,3-二磷酸甘油酸二磷酸甘油酸Bindingof2,3-bisphosphoglyceratetodeoxyhemoglobin.Effect of BPG on the binding of oxygen to hemoglobin高原反应的适应反应!高原反应的适应反应!OnemoleculeofBPGisboundtoeachhemoglobintetramerExpressionofhumanglobingenesatdifferentstagesof

100、development.Evolutionoftheglobingenes EvolutionaryconservationoftheglobinfoldingpatternSickle-CellHemoglobinSickle-cellhemoglobinhasgaineditsnamebecauseitcausesredbloodcellstoadoptanelongated,sickleshapeatlowoxygenconcentrations,duetothetendencyofthemutanthemoglobin,initsdeoxygenatedstate,toaggregat

101、eintolong,rodlikestructures.Theelongatedcellstendtoblockcapillaries,causinginflammationandconsiderablepain.Evenmoreseriousisthatthesickledcellsarefragile.Theirbreakdownleadstoananemiathatleavesthevictimsusceptibletoinfectionsanddiseases.Individualswhoarehomozygousforthesickle-cellmutationoftendonots

102、urviveintoadulthood,andthosewhodoareseriouslydebilitated.Sickle-cellAnemiaAcomparisonofuniform,cup-shaped,normalerythrocytes(a)withthevariablyshapederythrocytesseeninsickle-cellanemia(b),whichrangefromnormaltospinyorsickle-shaped.Distributionofmutationsinhumanhemoglobins.Thealteredpropertiesofhemogl

103、obinSresultfromasingleaminoacidsubstitution,aValinsteadofaGluresidueatposition6inthetwo chainsNormalandsickle-cellhemoglobin.(a)SubtledifferencesbetweentheconformationsofhemoglobinAandhemoglobinSresultfromasingleaminoacidchangeinthechains.(b)Asaresultofthischange,deoxyhemoglobinShasahydrophobicpatch

104、onitssurface,whichcausesthemoleculestoaggregateintostrandsthatalignintoinsolublefibers.SickleCellDiseaseat100YearsStuart H. Orkin and Douglas R. Higgs , Science, July16, 2010Effective strategies to treat sickle cell disease could involve manipulating the type of hemoglobin produced in patients.Healt

105、h Organization estimates that many of the more than 200,000 babies with SCD born annually in Africa will die before the age of 5 years from anemia and infection ( 3, 4). In the United States, approximately 50,000 individuals are afflicted with SCD. The global need to develop uniformly effective and

106、inexpensive therapy is enormous, and growing.SCD: Sickle Cell Disease The sole “cure” for SCD is bone marrow transplantation, but it works best with matched donors. Proof-of-principle experiments in gene therapy and gene repair with induced pluripotent stem (iPS) cells provide rationales for ongoing

107、 research into alternative curative strategies. Although prospects for gene therapy have improved with recent trials in patients with -thalassemia (in which-globin is inefficiently produced) , such a resource-intensive treatment is unlikely to succeed globally. Similarly, formidable hurdles in gener

108、ating and expanding blood stemcells from human iPS cells prevent consideration of this regenerative medicine approach in the near future.TherapyThe hemoglobin switch. The fetal () and adult () globin chains are expressed from genes on chromosome 11. SCD is caused by mutation of the chain to the sick

109、le (S) chain. Genome-wide association studies have identifi ed loci on chromosome 2 (BCL11A) and chromosome 6 (HBS1LMyb) that modify HbF expression. These modifiers affect the expression switch from to either or S globin. They may affect HbF levels either directly or indirectly. Targeted therapy cou

110、ld reverse the fetal-to-adult switch, and hence reduce disease severity.As the switch from -to -globin gene expression occurs after birth,HbF (22) is replaced by HbS (2S2), and symptoms of SCD ensue.SickleCellAdvantage-Individualsheterozygousforsickle-cellhemoglobinhaveahigherresistancetomalariathan

111、thosewhodonotcarrythesickle-cellmutation.Themalarialparasitespendsaportionofitslifecycleinhumanredcells,andtheincreasedfragilityofthesickledcells,eveninheterozygousindividuals,tendstointerruptthiscycle.Heterozygousindividualshaveahighersurvivalrate-andthereforeabetterchanceofpassingontheirgenes-inma

112、laria-infestedregions.However,thehighincidenceofthesegenesinthepopulationleadstothebirthofmanypeoplewhoarehomozygousforthemutanttrait. Proteinfunctionoftenentailsinteractionswithothermolecules.Amoleculeboundbyaproteiniscalledaligand,andthesitetowhichitbindsiscalledthebindingsite.Proteinsmayundergoco

113、nformationalchangeswhenaligandbinds,aprocesscalledinducedfit.Inamulti-subunit(subdomain)protein,thebindingofaligandtoonesubunitmayaffectligandbindingtoothersubunits(subdomains).Ligandbindingcanberegulated.Myoglobincontainsahemeprostheticgroup,whichbindsoxygen.HemeconsistsofasingleatomofFe2+coordinat

114、edwithinaporphyrin.Oxygenbindstomyoglobinreversibly;thissimplereversiblebindingcanbedescribedbyanassociationconstantKaoradissociationconstantKd.Foramonomericproteinsuchasmyoglobin,thefractionofbindingsitesoccupiedbyaligandisahyperbolicfunctionofligandconcentration. Normaladulthemoglobinhasfourheme-c

115、ontainingsubunits,two andtwo,similarinstructuretoeachotherandtomyoglobin.Hemoglobinexistsintwointerchangeablestructuralstates,TandR.TheTstateismoststablewhenoxygenisnotbound.OxygenbindingpromotestransitiontotheRstate.Oxygenbindingtohemoglobinisbothallostericandcooperative.AsO2bindstoonebindingsite,t

116、hehemoglobinundergoesconformationalchangesthataffecttheotherbindingsitesanexampleofallostericbehavior.ConformationalchangesbetweentheTandRstates,mediatedbysubunit-subunitinteractions,resultincooperativebinding;thisisdescribedbyasigmoidbindingcurveandcanbeanalyzedbyaHillplot.Twomajormodels(KNF&MWC)ha

117、vebeenproposedtoexplainthecooperativebindingofligandstomultisubunitproteins:theconcertedmodelandthesequentialmodel.HemoglobinalsobindsH+andCO2,resultingintheformationofionpairsthatstabilizetheTstateandlessentheproteinsaffinityforO2(theBohreffect).Oxygenbindingtohemoglobinisalsomodulatedby2,3-bisphos

118、phoglycerate,whichbindstoandstabilizestheTstate.aSickle-cellanemiaisageneticdiseasecausedbyasingleaminoacidsubstitution(Glu6toVal6)ineach chainofhemoglobin.Thechangeproducesahydrophobicpatchonthesurfaceofthehemoglobinthatcausesthemoleculestoaggregateintobundlesoffibers.Thishomozygousconditionresults

119、inseriousmedicalcomplications.9、 人的价值,在招收诱惑的一瞬间被决定。20-8月-2420-8月-24Tuesday, August 20, 202410、低头要有勇气,抬头要有低气。*8/20/2024 2:49:57 PM11、人总是珍惜为得到。20-8月-24*Aug-24 20-Aug-2412、人乱于心,不宽余请。*Tuesday, August 20, 202413、生气是拿别人做错的事来惩罚自己。20-8月-2420-8月-24*20 August 202414、抱最大的希望,作最大的努力。20 八月 2024*20-8月-2415、一个人炫耀什么,说明他内心缺少什么。八月 24*20-8月-24*20 August 202416、业余生活要有意义,不要越轨。*8/20/202417、一个人即使已登上顶峰,也仍要自强不息。*20-8月-24谢谢大家谢谢大家

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 文学/艺术/历史 > 人文/社科

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号