文档详情

可机加工性-毕业论文外文文献翻译

公****
实名认证
店铺
PDF
591.82KB
约14页
文档ID:576124519
可机加工性-毕业论文外文文献翻译_第1页
1/14

1 MACHINABILITY The machinability of a material usually defined in terms of four factors: 1、 Surface finish and integrity of the machined part; 2、 Tool life obtained; 3、 Force and power requirements; 4、 Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone. Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below. 1 Machinability Of Steels Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels. Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels. Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability. 2 Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels. When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “low carbon,” a condition that improves their corrosion resistance.) However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels. Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds. Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials. The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine 3 with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels. Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation. Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability. In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties. Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability. 2 Machinability of Various Other Metals Aluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, 4 since it has a high thermal coefficient of expansion and a relatively low elastic modulus. Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment. Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials. Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds. Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass. Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric). Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary. Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels. Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high. Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine. Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures. Zirconium has good machinability. It requires a coolant-type cutting fluid, however, because of the explosion and fire. 3 Machinability of Various Materials Graphite is abrasive; it requires hard, abrasion-resistant, sharp tools. 5 Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, and proper support of the workpiece. Tools should be sharp. External cooling of the cutting zone may be necessary to keep the chips from becoming “gummy” and sticking to the tools. Cooling can usually be achieved with a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from C80 to C160 (F175toF315), and then cooled slowly and uniformly to room temperature. Thermosetting plastics are brittle and sensitive to thermal gradients during cutting. Their machinability is generally similar to that of thermoplastics. Because of the fibers present, reinforced plastics are very abrasive and are difficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers. The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processing parameters, such as ductile-regime cutting (Section 22.4.2). Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the individual components, i.e., reinforcing or whiskers, as well as the matrix material. 4 Thermally Assisted Machining Metals and alloys that are difficult to machine at room temperature can be machined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heat—a torch, induction coil, high-energy beam (such as laser or electron beam), or plasma arc—is forces, (b) increased tool life, (c) use of inexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter. It may be difficult to heat and maintain a uniform temperature distribution within 6 the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride. SUMMARY Machinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables. 译文: 可机加工性 一种材料的可机加工性通常以四种因素的方式定义: 1、分的表面光洁性和表面完整性。

2、刀具的寿命 3、切削力和功率的需求 4、切屑控制 以这种方式, 好的可机加工性指的是好的表面光洁性和完整性, 长的刀具寿命,低的切削力和功率需求关于切屑控制,细长的卷曲切屑,如果没有被切割成小片,以在切屑区变的混乱,缠在一起的方式能够严重的介入剪切工序 因为剪切工序的复杂属性, 所以很难建立定量地释义材料的可机加工性的关系在制造厂里,刀具寿命和表面粗糙度通常被认为是可机加工性中最重要的因素 尽管已不再大量的被使用, 近乎准确的机加工率在以下的例子中能够被看到 1 钢的可机加工性 因为钢是最重要的工程材料之一(正如第 5 章所示) ,所以他们的可机加工性已经被广泛地研究过 通过宗教铅和硫磺, 钢的可机加工性已经大大地提高了从而得到了所谓的易切削钢 二次硫化钢和二次磷化钢 硫在钢中形成硫化锰夹杂物(第二相粒子) ,这些夹杂物在第一剪切区引起应力其结果是使切屑容易断开而变小,从而改善了可加工性这些夹杂物的大小、形状、分布和集中程度显著的影响可加工性化学元素如碲和硒,其化学性质与硫类似,在二次硫化钢中起夹杂物改性作用 钢中的磷有两个主要的影响它加强铁素体,增加硬度越硬的钢,形成更好的切屑形成和表面光洁性。

需要注意的是软钢不适合用于有积屑瘤形成和很差的表面光洁性的机器 第二个影响是增加的硬度引起短切屑而不是不断的细长的 7 切屑的形成,因此提高可加工性 含铅的钢 钢中高含量的铅在硫化锰夹杂物尖端析出 在非二次硫化钢中,铅呈细小而分散的颗粒铅在铁、铜、铝和它们的合金中是不能溶解的因为它的低抗剪强度因此,铅充当固体润滑剂并且在切削时,被涂在刀具和切屑的接口处这一特性已经被在机加工铅钢时,在切屑的刀具面表面有高浓度的铅的存在所证实 当温度足够高时—例如, 在高的切削速度和进刀速度下—铅在刀具前直接熔化,并且充当液体润滑剂除了这个作用,铅降低第一剪切区中的剪应力,减小切削力和功率消耗铅能用于各种钢号,例如 10XX,11XX,12XX,41XX 等等铅钢被第二和第三数码中的字母 L 所识别(例如,10L45) (需要注意的是在不锈钢中,字母 L 的相同用法指的是低碳,提高它们的耐蚀性的条件) 然而,因为铅是有名的毒素和污染物,因此在钢的使用中存在着严重的环境隐患(在钢产品中每年大约有 4500 吨的铅消耗) 结果,对于估算钢中含铅量的使用存在一个持续的趋势铋和锡现正作为钢中的铅最可能的替代物而被人们所研究。

脱氧钙钢 一个重要的发展是脱氧钙钢,在脱氧钙钢中矽酸钙盐中的氧化物片的形成这些片状,依次减小第二剪切区中的力量,降低刀具和切屑接口处的摩擦和磨损温度也相应地降低结果,这些钢产生更小的月牙洼磨损,特别是在高切削速度时更是如此 不锈钢 奥氏体钢通常很难机加工振动能成为一个问题,需要有高硬度的机床然而,铁素体不锈钢有很好的可机加工性马氏体钢易磨蚀,易于形成积屑瘤,并且要求刀具材料有高的热硬度和耐月牙洼磨损性经沉淀硬化的不锈钢强度高、磨蚀性强,因此要求刀具材料硬而耐磨 钢中其它元素在可机加工性方面的影响 钢中铝和矽的存在总是有害的,因为这些元素结合氧会生成氧化铝和矽酸盐,而氧化铝和矽酸盐硬且具有磨蚀性这些化合物增加刀具磨损,降低可机加工性因此生产和使用净化钢非常必要 根据它们的构成,碳和锰钢在钢的可机加工性方面有不同的影响低碳素钢(少于 0.15%的碳)通过形成一个积屑瘤能生成很差的表面光洁性尽管铸钢的可机加工性和锻钢的大致相同,但铸钢具有更大的磨蚀性刀具和模具钢很难用于机加工,他们通常再煅烧后再机加工大多数钢的可机加工性在冷加工后都有所提高,冷加工能使材料变硬并且减少积屑瘤的形成。

其它合金元素,例如镍、铬、钳和钒,能提高钢的特性,减小可机加工性硼的影响可以忽视气态元素比如氢和氮在钢的特性方面能有特别的有害影响 8 氧已经被证明了在硫化锰夹杂物的纵横比方面有很强的影响 越高的含氧量, 就产生越低的纵横比和越高的可机加工性 选择各种元素以改善可加工性, 我们应该考虑到这些元素对已加工零件在使用中的性能和强度的不利影响例如,当温度升高时,铝会使钢变脆(液体—金属脆化,热脆化,见 1.4.3 节) ,尽管其在室温下对力学性能没有影响 因为硫化铁的构成,硫能严重的减少钢的热加工性,除非有足够的锰来防止这种结构的形成在室温下,二次磷化钢的机械性能依赖于变形的硫化锰夹杂物的定位(各向异性) 二次磷化钢具有更小的延展性,被单独生成来提高机加工性 2 其它不同金属的机加工性 尽管越软的品种易于生成积屑瘤, 但铝通常很容易被机加工, 导致了很差的表面光洁性高的切削速度,高的前角和高的后角都被推荐了有高含量的矽的锻铝合金铸铝合金也许具有磨蚀性,它们要求更硬的刀具材料尺寸公差控制也许在机加工铝时会成为一个问题, 因为它有膨胀的高导热系数和相对低的弹性模数 铍和铸铁相同因为它更具磨蚀性和毒性,尽管它要求在可控人工环境下进行机加工。

灰铸铁普遍地可加工,但也有磨蚀性铸造无中的游离碳化物降低它们的可机加工性,引起刀具切屑或裂口它需要具有强韧性的工具具有坚硬的刀具材料的球墨铸铁和韧性铁是可加工的 钴基合金有磨蚀性且高度加工硬化的 它们要求尖的且具有耐蚀性的刀具材料并且有低的走刀和速度 尽管铸铜合金很容易机加工,但因为锻铜的积屑瘤形成因而锻铜很难机加工黄铜很容易机加工,特别是有添加的铅更容易青铜比黄铜更难机加工 镁很容易机加工, 镁既有很好的表面光洁性和长久的刀具寿命然而,因为高的氧化速度和火种的危险(这种元素易燃) ,因此我们应该特别小心使用它 钳易拉长且加工硬化, 因此它生成很差的表面光洁性 尖的刀具是很必要的 镍基合金加工硬化,具有磨蚀性,且在高温下非常坚硬它的可机加工性和不锈钢相同 钽非常的加工硬化,具有可延性且柔软它生成很差的表面光洁性且刀具磨损非常大 钛和它的合金导热性(的确,是所有金属中最低的),因此引起明显的温度升高和积屑瘤它们是难机加工的 钨易脆,坚硬,且具有磨蚀性,因此尽管它的性能在高温下能大大提高,但它的机加工性仍很低 9 锆有很好的机加工性然而,因为有爆炸和火种的危险性,它要求有一个冷却性质好的切削液。

3 各种材料的机加工性 石墨具有磨蚀性它要求硬的、尖的,具有耐蚀性的刀具 塑性塑料通常有低的导热性,低的弹性模数和低的软化温度因此,机加工热塑性塑料要求有正前角的刀具(以此降低切削力) ,还要求有大的后角,小的切削和走刀深的,相对高的速度和工件的正确支承刀具应该很尖 切削区的外部冷却也许很必要,以此来防止切屑变的有黏性且粘在刀具上有了空气流,汽雾或水溶性油,通常就能实现冷却在机加工时,残余应力也许能生成并发展为了解除这些力,已机加工的部分要在CC16080—(FF315175—)的温度范围内冷却一段时间,然而慢慢地无变化地冷却到室温 热固性塑料易脆,并且在切削时对热梯度很敏感它的机加工性和热塑性塑料的相同 因为纤维的存在,加强塑料具有磨蚀性,且很难机加工纤维的撕裂、拉出和边界分层是非常严重的问题 它们能导致构成要素的承载能力大大下降 而且,这些材料的机加工要求对加工残片仔细切除,以此来避免接触和吸进纤维 随着纳米陶瓷(见 8.2.5 节)的发展和适当的参数处理的选择,例如塑性切削(见 22.4.2 节) ,陶瓷器的可机加工性已大大地提高了 金属基复合材料和陶瓷基复合材料很能机加工, 它们依赖于单独的成分的特性,比如说增强纤维或金属须和基体材料。

4 热辅助加工 在室温下很难机加工的金属和合金在高温下能更容易地机加工 在热辅助加工时(高温切削) ,热源—一个火把,感应线圈,高能束流(例如雷射或电子束) ,或等离子弧—被集中在切削刀具前的一块区域内好处是: (a) 低的切削力 (b)增加的刀具寿命 (c)便宜的切削刀具材料的使用 (d)更高的材料切除率 (e)减少振动 也许很难在工件内加热和保持一个不变的温度分布而且,工件的最初微观结构也许被高温影响,且这种影响是相当有害的尽管实验在进行中,以此来机加工陶瓷器如氮化矽, 但高温切削仍大多数应用在高强度金属和高温度合金的车削中 小结 通常,零件的可机加工性能是根据以下因素来定义的:表面粗糙度,刀具的寿命,切削力和功率的需求以及切屑的控制材料的可机加工性能不仅取决于起内在特性和微观结构,而且也依赖于工艺参数的适当选择与控制 10 毕业论文研究方法汇总 调查法 调查法是科学研究中最常用的方法之一它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。

调查法中最常用的是问卷调查法, 它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究 观察法 观察法是指研究者根据一定的研究目的、 研究提纲或观察表, 用自己的感官和辅助工具去直接观察被研究对象, 从而获得资料的一种方法 科学的观察具有目的性和计划性、系统性和可重复性在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩大人们的感性认识②启发人们的思维③导致新的发现 实验法 实验法是通过主支变革、 控制研究对象来发现与确认事物间的因果联系的一种科研方法其主要特点是:第一、主动变革性观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要第二、控制性科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象第三,因果性实验以发现、确认事物之间的因果联系的有效工具和必要途径 11 文献研究法 文献研究法是根据一定的研究目的或课题, 通过调查文献来获得资料, 从而全面地、正确地了解掌握所要研究问题的一种方法。

文献研究法被子广泛用于各种学科研究中其作用有:①能了解有关问题的历史和现状,帮助确定研究课题②能形成关于研究对象的一般印象,有助于观察和访问③能得到现实资料的比较资料④有助于了解事物的全貌 实证研究法 实证研究法是科学实践研究的一种特殊形式 其依据现有的科学理论和实践的需要, 提出设计, 利用科学仪器和设备, 在自然条件下, 通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动主要目的在于说明各种自变量与某一个因变量的关系 定量分析法 在科学研究中, 通过定量分析法可以使人们对研究对象的认识进一步精确化, 以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势 定性分析法 定性分析法就是对研究对象进行“质”的方面的分析具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律 跨学科研究法 运用多学科的理论、 方法和成果从整体上对某一课题进行综合研究的方法, 也称“交叉研究法”科学发展运动的规律表明,科学在高度分化中又高度综合,形 12 成一个统一的整体。

据有关专家统计,现在世界上有 2000 多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势 个案研究法 个案研究法是认定研究对象中的某一特定对象, 加以调查分析, 弄清其特点及其形成过程的一种研究方法个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查,即对某个组织或团体进行调查研究;(3)问题调查,即对某个现象或问题进行调查研究 功能分析法 功能分析法是社会科学用来分析社会现象的一种方法, 是社会调查常用的分析方法之一 它通过说明社会现象怎样满足一个社会系统的需要 (即具有怎样的功能)来解释社会现象 数量研究法 数量研究法也称“统计分析法”和“定量分析法”,指通过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和揭示事物间的相互关系、变化规律和发展趋势,借以达到对事物的正确解释和预测的一种研究方法 模拟法(模型方法) 模拟法是先依照原型的主要特征, 创设一个相似的模型, 然后通过模型来间接研究原型的一种形容方法 根据模型和原型之间的相似关系, 模拟法可分为物理模拟和数学模拟两种。

探索性研究法 13 探索性研究法是高层次的科学研究活动 它是用已知的信息, 探索、 创造新知识,产生出新颖而独特的成果或产品 信息研究方法 信息研究方法是利用信息来研究系统功能的一种科学研究方法 美国数学、 通讯工程师、生理学家维纳认为,客观世界有一种普遍的联系,即信息联系当前,正处在“信息革命”的新时代,有大量的信息资源,可以开发利用信息方法就是根据信息论、系统论、控制论的原理,通过对信息的收集、传递、加工和整理获得知识,并应用于实践,以实现新的目标信息方法是一种新的科研方法,它以信息来研究系统功能,揭示事物的更深一层次的规律,帮助人们提高和掌握运用规律的能力 经验总结法 经验总结法是通过对实践活动中的具体情况,进行归纳与分析,使之系统化、理论化,上升为经验的一种方法总结推广先进经验是人类历史上长期运用的较为行之有效的领导方法之一 描述性研究法 描述性研究法是一种简单的研究方法, 它将已有的现象、 规律和理论通过自己的理解和验证,给予叙述并解释出来它是对各种理论的一般叙述,更多的是解释别人的论证,但在科学研究中是必不可少的它能定向地提出问题,揭示弊端,描述现象,介绍经验,它有利于普及工作,它的实例很多,有带揭示性的多种情况的调查;有对实际问题的说明;也有对某些现状的看法等。

数学方法 数学方法就是在撇开研究对象的其他一切特性的情况下, 用数学工具对研究对象进行一系列量的处理, 从而作出正确的说明和判断, 得到以数字形式表述的成果科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互 14 相制约的要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性数学方法主要有统计处理和模糊数学分析方法 思维方法 思维方法是人们正确进行思维和准确表达思想的重要工具, 在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义 系统科学方法 20 世纪,系统论、控制论、信息论等横向科学的迅猛发展,为发展综合思维方式提供了有力的手段,使科学研究方法不断地完善而以系统论方法、控制论方法和信息论方法为代表的系统科学方法, 又为人类的科学认识提供了强有力的主观手段 它不仅突破了传统方法的局限性, 而且深刻地改变了科学方法论的体系这些新的方法,既可以作为经验方法,作为获得感性材料的方法来使用,也可以作为理论方法,作为分析感性材料上升到理性认识的方法来使用,而且作为后者的作用比前者更加明显。

它们适用于科学认识的各个阶段,因此,我们称其为系统科学方法。

下载提示
相似文档
正为您匹配相似的精品文档