储罐区防火堤设计要求规范13003

上传人:pu****.1 文档编号:575128201 上传时间:2024-08-17 格式:PDF 页数:37 大小:2.47MB
返回 下载 相关 举报
储罐区防火堤设计要求规范13003_第1页
第1页 / 共37页
储罐区防火堤设计要求规范13003_第2页
第2页 / 共37页
储罐区防火堤设计要求规范13003_第3页
第3页 / 共37页
储罐区防火堤设计要求规范13003_第4页
第4页 / 共37页
储罐区防火堤设计要求规范13003_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《储罐区防火堤设计要求规范13003》由会员分享,可在线阅读,更多相关《储罐区防火堤设计要求规范13003(37页珍藏版)》请在金锄头文库上搜索。

1、 . - - -可修编. 储罐区防火堤设计规 X GB 503512005 1 总 则 101 为合理设计防火堤、防护墙,保障储罐区安全,制定本规 X。 102 本规 X 适用于地上储罐区的新建和改、扩建工程中的防火堤、防护墙的设计。不适用于非液态储罐区的设计。 103 储罐区防火堤、防护墙的设计除应执行本规 X 外,尚应符合国家现行有关标准的规定。 . - - -可修编. 3 防火堤、防护墙的布置 31 一般规定 311 防火堤、防护墙的选用应根据储存液态介质的性质确定。 312 防火堤、防护墙必须采用不燃烧材料建造。且必须密实、闭合。 . - - -可修编. 313 进出储罐组的各类管线、

2、电缆宜从防火堤、防护墙顶部跨越或从地面以下穿过。当必须穿过防火堤、防护墙时,应设置套管并应采取有效的密封措施;也可采用固定短管且两端采用软管密封连接的形式。 314 沿无培土的防火堤内侧修建排水沟时,沟壁的外侧与防火堤内堤脚线的距离不应小于 05m;沿土堤或内培土的防火堤内侧修建排水沟时,沟壁的外侧与土堤内侧或培土堤脚线的距离不应小于 08m,且沟内应有防渗漏的措施。沿防护墙修建排水沟时,沟壁的外侧与防护墙内堤脚线的距离不应小于 05m。 315 每一储罐组的防火堤、防护墙应设置不少于 2 处越堤人行踏步或坡道,并设置在不同方位上。防火堤内侧高度大于等于 15m 时。应在两个人行踏步或坡道之间

3、增设踏步或逃逸爬梯。隔堤、隔墙亦应设置人行踏步或坡道。 32 油罐组防火堤的布置 321 立式油罐的罐壁至防火堤内堤脚线的距离,不应小于该罐罐壁高度的一半;卧式油罐的罐壁至防火堤或防护墙内堤脚线的距离不应小于 3m。 注:高架立式罐(指罐环梁顶面到场内地面距离大于 15m 的罐)罐壁至防火堤内堤脚线的距离,不应小于下述高度的一半;该高度等于罐壁高度与环粱顶面到场内地面距离之和减去 15m。 322 相邻油罐组防火堤外堤脚线之间,应留有宽度不小于 7m 的消防空地。 323 同一个油罐组内的总容量及油罐数量应符合下列规定: 1 固定顶油罐组及固定顶油罐与浮顶、内浮顶油罐的混合罐组,其总容量不应大

4、于 120000m3。 2 浮顶、内浮顶油罐组,其总容量不应大于 600000m3。 3 油罐组内的油罐数量,当单罐容量大于或等于 1000m3时,不应多于 12 座;当单罐容量小于 1000m3或储存丙 B 类油品时,油罐数量不限。 4 油罐组内单罐容量小于 1000m3的储存丙 B 类油品的油罐不应超过 4 排;其他油罐不应超过 2 排。 注:浅盘或浮舱用易熔材料制作的内浮顶油罐的布置同固定顶油罐。 324 油罐组防火堤内有效容积应符合下列规定: 1 固定顶油罐,不应小于油罐组内一个最大油罐的容量。 2 浮顶油罐或内浮顶油罐,不应小于油罐组内一个最大油罐容量的一半。 . - - -可修编.

5、 3 当固定顶油罐与浮顶油罐或内浮顶油罐同组布置时,应取分别按本条第 1、2 款规定的计算值中的较大值。 4 覆土油罐的防火堤内有效容积规定同本条第 1、2、3 款,但油罐容量应按其高出地面部分的容量计算。 325 油罐组防火堤顶面应比计算液面高出 02m。立式油罐组的防火堤内侧高度不应小于 10m,且外侧高度不应大于 22m;卧式油罐组的防火堤内、外侧高度均不应小于 05m。立式油罐组隔堤高度宜为 0508m。 326 油罐组防火堤有效容积应按下式计算: VAHj(V1V2V3V4) (326) 式中 V防火堤有效容积(m3); A由防火堤中心线围成的水平投影面积(m2); Hj设计液面高度

6、(m); V1防火堤内设计液面高度内的一个最大油罐的基础体积(m3); V2防火堤内除一个最大油罐以外的其他油罐在防火堤设计液面高度内的液体体积和油罐基础体积之和(m3); V3防火堤中心线以内设计液面高度内的防火堤体积和内培土体积之和(m3); V4防火堤内设计液面高度内的隔堤、配管、设备及其他构筑物体积之和(m3)。 327 防火堤内的地面设计应符合下列规定: 1 防火堤内的地面坡度宜为 05;防火堤内场地土为湿陷性黄土、膨胀土或盐渍土时,应根据其危害的严重程度采取措施,防止水害;在有条件的地区,防火堤内可种植高度不超过 150mm 的常绿草皮。 2 当储罐泄漏物有可能污染地下水或附近环境

7、时,堤内地面应采取防渗漏措施。 328 防火堤内排水设施的设置应符合下列规定: 1 防火堤内应设置集水设施。连接集水设施的雨水排放管道应从防火堤内设计地面以下通出堤外,并应设置安全可靠的截油排水装置。 2 在年降雨量不大于 200mm 或降雨在 24h 内可渗完,且不存在环境污染的可能时,可不设雨水排除设施。 329 油罐组防火堤内设计地面宜低于堤外消防道路路面或地面。 . - - -可修编. 3210 油罐组内的单罐容量大于或等于 50000m3时,宜设置进出罐组的越堤车行通道。该道路可为单车道,应从防火堤顶部通过,弯道纵坡不宜大于 10,直道纵坡不宜大于 12。 3211 油罐组内隔堤的布

8、置应符合下列规定: 1 单罐容量等于或大于 20000m3时,隔堤内油罐数量不应多于 2 座。 2 单罐容量等于或大于 5000m3且小于 20000m3的罐,隔堤内油罐数量不应多于 4 座。 3 单罐容量小于 5000m3的罐,隔堤内油罐数量不应多于 6 座。 4 沸溢性油品油罐,隔堤内储罐数量不应多于 2 座。 5 丙 B 类油品油罐,隔堤内储罐数量不受以上限制,可根据具体情况进行设置。 . - - -可修编. 4 防火堤的选型与构造 41 选 型 411 防火堤、防护墙的设计,应在满足各项技术要求的基础上,因地制宜,合理选型,达到安全耐久、经济合理的效果。 412 储存酸、碱等腐蚀性介质

9、的储罐组,防火堤堤身内侧均应作防腐蚀处理。用于全冷冻式储罐组的防火堤,应 . - - -可修编. 采取防冷冻的措施。 413 防火堤的选型应符合下列规定: 1 土筑防火堤,在占地、土质等条件能满足需要的地区应选用。 2 钢筋混凝土防火堤,一般地区均可采用。在用地紧 X 地区、大型油罐区及储存大宗化学品的罐区可优先选用。 3 浆砌毛石防火堤,在抗震设防烈度不大于 6 度且地质条件较好、不易造成基础不均匀沉降的地区可选用。 4 砖、砌块防火堤和夹芯式中心填土砖、砌块防火堤,一般地区均可采用。 414 防护墙宜采用砌体结构。 415 防火堤(土堤除外)应采取在堤内侧培土或喷涂隔热防火涂料等保护措施。

10、 . - - -可修编. 428 浆砌毛石防火堤的构造应符合下列规定: 1 堤身及基础最小厚度应由强度及稳定性计算确定且不应小于 500mm;基础构造应符合现行国家标准建筑地 . - - -可修编. 基基础设计规 X(GB 50007)的规定。 2 毛石强度等级不应低于 MU730,砂浆强度等级不宜低于 M10,浆砌必须饱满密实。 3 堤顶应做现浇钢筋混凝土压顶,压顶在变形缝处应断开。压顶厚度不宜小于 100mm,混凝土强度等级不宜低于 C20,压顶内纵向钢筋直径不宜小于10,钢筋间距不宜大于 200mm。 4 堤身应做 1:1 水泥砂浆勾缝。 429 砖、砌块防火堤的构造应符合下列规定: 1

11、 防火堤堤身厚度应由强度及稳定性计算确定,且不应小于 300mm,堤外侧宜用水泥砂浆抹面。 2 砖、砌块的强度等级不应低于 MU10,砌筑砂浆强度等级不宜低于 M75;基础为毛石砌体时,毛石强度等级不应低于 MU30;浆砌必须饱满密实并不得采用空心砖砌体。 3 堤顶应做现浇钢筋混凝土压顶,压顶在变形缝处应断开。压顶厚度不宜小于 100mm,混凝土强度等级不宜低于 C20,压顶内宜配置不少于 310 纵向钢筋。 4 抗震设防烈度大于或等于 7 度的地区或地质条件复杂、地基沉降差异较大的地区宜采取加强整体性的结构措施。 5 夹芯式中心填土砖砌防火堤的构造要求:两侧砖墙厚度不宜小于 200mm;沿堤

12、长每隔 1520m 设不小于 200mm 厚拉结墙与两侧墙咬槎砌筑;中间填土厚度 300500mm,并分层夯实;堤顶应设厚度不小于 100mm 的现浇钢筋混凝土压顶, 混凝土强度等级不宜低于 C20, 压顶内纵向钢筋直径不宜小于10, 钢筋间距不宜大于 200mm。 4210 防护墙的构造应符合下列规定: 1 砖、砌块防护墙厚度不宜小于 200mm,双面抹水泥砂浆。 2 毛石防护墙厚度不宜小于 400mm,双面水泥砂浆勾缝。 4211 隔堤、隔墙的构造应符合下列规定: 1 砖、砌块隔堤、隔墙的厚度不宜小于 200mm,宜双面用水泥砂浆抹面,堤顶宜设钢筋混凝土压顶,压顶构造应符合本规 X 第 4

13、29 条第 3 款的规定。 2 毛石隔堤、隔墙的厚度不宜小于 400mm,宜双面水泥砂浆勾缝,堤顶宜设钢筋混凝土压顶,压顶构造应符合 . - - -可修编. 本规 X 第 428 条第 3 款的规定。 3 钢筋混凝土隔堤、隔墙的厚度不宜小于 100mm,可按构造配单层钢筋网。 5 防火堤的强度计算及稳定性验算 51 荷载效应和地震作用效应的组合 511 防火堤设计应按承载能力极限状态进行堤内满液工况荷载效应的基本组合计算。在 7 度及 7 度以上地区应进行地震作用效应和其他荷载效应的基本组合计算。 512 进行堤内满液工况荷载效应基本组合计算时,荷载效应基本组合的设计值应按下式确定: SGSG

14、KYSYKTSTK (512) 式中 S荷载效应组合的设计值; G、Y、T分别为堤身自重荷载、静液压力、静土压力荷载分项系数,取值见表 514; SGK按堤身自重荷载标准值计算的效应值; SYK按静液压力荷载标准值计算的效应值; STK按静土压力荷载标准值计算的效应值。 513 进行地震作用效应和其他荷载效应的基本组合计算时,荷 载效应和地震作用效应组合的设计值应按下式确定: niETKEYKEGKEhGTTGYYGEGSSSSSSS1)( (513) 式中 G、Y、T分别为堤身自重荷载、静液压力荷载、静土压力荷载分项系数,取值见表 514; Eh水平地震作用分项系数,取值见表 514; SG

15、E按堤身自重荷载代表值计算的效应值; SGY按静液压力荷载代表值计算的效应值; SGT按静土压力荷载代表值计算的效应值; . - - -可修编. SEGK、SEYK,、SETK分别为按堤身水平地震作用标准值、水平动液压力标准值和水平动土压力标准值计算的效应值; 组合值系数,一般可取 06。 514 对于基本组合,荷载效应和地震作用效应的分项系数应按下列规定采用: 1 进行截面强度计算时,分项系数应按表 514 采用。当结构自重荷载效应对结构承载力有利时,表 514中G取 10。 2 进行稳定性验算时,各分项系数均取 10。 表 514 荷载效应和地震作用效应的分项系敛 所考虑的组合 G Y T

16、 Eh 堤内满液工况荷载效应基本组合 12 10 12 地震作用和其他荷载效应基本组合 12 10 12 13 注:表中“”号表示组合中不考虑该项荷裁或作用效应。 52 荷载、地震作用及内力计算 521 自重荷载标准值可按下式计算确定: G1KB1H1 (521) 式中 G1K每米堤长计算截面以上堤身自重荷载标准值(kNm); H1计算截面至堤顶面的距离(m); . - - -可修编. B1计算截面以上堤身的平均厚度(m); 材质重度(kNm3)。 522 防火堤内侧所受的静液压力荷载标准值(图 522)可按下列公式计算确定: 图 522 静液压力计算示意图 ZpyYK (522) 221Yy

17、YKHP (522-2) OYKYKHPM (522-3) HHO31 (522-4) 式中 YKp每米堤长静液压力沿液体深度分布的水平荷载标准值(kNm2); y堤内液体重度,取 10kNm3; . - - -可修编. Z液体深度(m); PYk计算截面以上每米堤长静液压力合力标准值(kNm); HY计算截面至液面距离(m); MYK计算截面以上每米堤长静液压力合力对计算截面的弯矩标准值(kNmm); HO计算截面以上每米堤长静液压力合力位置至计算截面的距离(m)。 523 防火堤内培土的静土压力荷载标准值(图 523)的计算可按下列规定确定: 图 523 内培土压力计算示意图 1 图 52

18、3 中的折线AFD 为土压力分布曲线,F 为转折点,其压力分布可按下列公式计算确定: 0AKp (523-1) . - - -可修编. atGKKHp2 (523-2) aaaKKhKH2 (523-3) atgh (523-4) 当 H1H2时, atBKKHp1 (523-5) 当 H1H2时, KhHptBK)(1 (523-6) )245(2 tgKa (523-7) 22)cos)sin(sin1 (cosaK (523-8) 式中 AKp、BKp堤顶和计算截面处每米堤长静土压力分布荷载标准值(kNm2); GKp土压力分布曲线转折处的每米堤长静土压力分布荷载标准值(kNm2); h

19、培土坡线与堤背延长线的交点 A至堤顶的距离(m); 培土顶面宽度(m); H1计算截面以上培土高度(m); H2压力分布曲线转折点至堤顶的距离(m); 培土坡面与水平面的夹角(); t土体重度,可取 1618kNm3; Ka以AB 为光滑堤背而填土面为水平时的主动土压力系数, 可按式 5 2 3-7 计算或查附录表A 0 1; aK以 AB 为假想堤背而培土坡面与水平成角时的主动土压力系数,可按式 523-8 计算或查附录表 A02; . - - -可修编. 培土的内摩擦角(),当无实验资料时,可根据土的性质取 3540。 2 当 H1H2时,土压力合力及弯矩可按下列公式计算确定: 121Hp

20、PBKTK (523-9) OTKTKHPM (523-10) 131HHO (523-11) 式中 TKP计算截面以上每米堤长静土压力合力标准值(kNm); TKM计算截面以上每米堤长静土压力合力对计算截面的弯矩标准值(kNmm); HO计算截面以上每米堤长静土压力合力作用位置至计算截面的距离(m)。 3 当 H1H2时,土压力合力及弯矩可按下列公式计算确定: )(2121211HHpHpPBKGKTK (523-12) )(3)()2(211221211HHpHpHHpHHHpHBGBGO (523-13) 524 防火堤受到的水平地震作用的计算应符合下列规定: 1 钢筋混凝土防火堤的水平

21、地震作用(图 524-1)标准值可按下列公式计算确定: . - - -可修编. 图 524-1 钢筋混凝土防火堤水平地震作用计算示意图 )2cos1 (1max1HXBapEGK (524-1) PHBaaEGK11max1 (524-2) OEGKEGKHPM (524-3) HaHO2 (524-4) 式中 EGKp每米堤长水平地震作用分布值(kNm2); PEGK计算截面以上每米堤长水平地震作用合力标准值(kNm); MEGK计算截面以上每米堤长水平地震作用合力对计算截面的弯矩标准值(kNmm); max水平地震影响系数最大值,当设防烈度为 7 度、8 度和 9 度时分别取 008(01

22、2)、016(024)和 032,括号内数值分别用于设计基本地震加速度为 015g 和 030g 的地区; 1钢筋混凝土防火堤基本振型参与系数,取 16; X计算截面至基础顶面的距离(m); . - - -可修编. 1、2根据 XH 值求得的相应系数,见表 524; HO计算截面以上每米堤长水平地震作用合力作用点至计算截面的距离(m); H基础顶面至堤顶的高度(m); B1计算截面以上堤身平均厚度(m)。 2 砖、砌块及毛石防火堤的水平地震作用(图 524-2)可按下列公式计算确定: 图 524-2 砖、砌块及毛石防火堤水平地震作用计算示意图 HXBpEGK2sin1max2 (524-5)

23、PHBEGK13max2 (524-6) EGKMPOEGKH (524-7) HHO4 (524-8) 式中 2砖、砌块及毛石防火堤基本振型参与系数,取 127; . - - -可修编. 3、4根据 XH 比值求得的相应系数,见表 524。 525 地震作用时,防火堤内水平动液压力标准值(图 525)可按下列公式计算确定: . - - -可修编. 图 525 水平动液压力计算示意图 ddyEYKfHpmax25. 1 (525-1) PYEYKEYKHp (525-2) 21EYKMP2YEYKH (525-3) 式中 EYKp每米堤长水平动液压力标准值(kNm2); df水平动液压力系数,

24、取 035; Hd液体深度(m); PEYK计算截面 J 三上每米堤长水乎动液压力合力标准值(kNm); MEYK计算截面以上每米堤长水平动液压力合力对计算截面的弯矩标准值(kNmm); HY计算截面至液面的距离(m)。 526 地震作用时,防火堤培土的水平动土压力标准值可按下列公式计算确定: Pmax25. 1ETKPtgTK (526-1) TETKHM4 . 0PETK (526-2) 式中 PETK计算截面以上每米堤长水平动土压力合力标准值(kNm); METK计算截面以上每米堤长水平动土压力合力对计算截面的弯矩标准值(kNmm); PTK土压力合力(kNm),可按式 523-9 或式

25、 523-12 计算确定; HT计算截面以上培土高度(m)。 53 强度计算 531 防火堤应进行截面强度计算。 532 防火堤截面强度计算应符合下列规定: 1 防火堤截面强度应按下式计算确定: . - - -可修编. OSR 式中 O结构重要性系数,取 10; S荷载效应组合设计值,按式 512 计算; R防火堤抗力设计值,按各有关规 X 确定。 2 防火堤截面抗震强度验算应按下式计算确定: SRRE 式中 RE防火堤承载能力抗震调整系数,对于钢筋混凝土防火堤,取 085;对于其他防火堤,取 10; S荷载效应组合设计值,按式 513 计算。 533 基础强度和地基承载力计算应符合现行国家标

26、准建筑地基基础设计规 X(GB 50007)的有关规定。 54 稳定性验算 541 防火堤的稳定性验算应包括抗滑验算和抗倾覆验算。 542 防火堤抗滑验算应符合下列规定: 1 防火堤抗滑验算应按下式计算确定: (RHPP)P13 (542-1) 式中 P防火堤每米堤长所承受的总水平荷载设计值(kNm),按式 512 和式 513 计算确定; RH每米堤长基础底面摩擦阻力设计值(kNm),按式 542-2 计算确定; PP每米堤长被动土压力设计值(kNm),按式 542-3 计算确定。 2 基础底面摩擦阻力设计值可按下式计算确定: RHg (542-2) 式中 G每米堤长自重及覆土传至基础底面的

27、垂直荷载合力设计值(kNm); 基础与地基之间的摩擦系数,应根据试验资料取值;当无试验资料时按附录 B 取值。 3 被动土压力设计值可按下列公式计算确定: . - - -可修编. PPPdPtKCKd2212 (542-3) KP)245(2 tg (542-4) 式中 被动土压力折减系数,取 03; d基础埋置深度(m); KP被动土压力系数,按式 542-4 计算或查附录表 A03; C粘性地基土的粘结力(kNm2); 地基土的内摩擦角()。 543 防火堤抗倾覆验算应符合下列规定: 1 防火堤抗倾覆验算应按下式计算确定: MWM16 (543-1) 式中 M各倾覆力矩换算至基础底面并按式

28、 512 和式 513 进行组合后的每米堤长总力矩设计值(kNmm); MW每米堤长垂直荷载合力产生的稳定力矩设计值(kNmm),按式 543-2 计算确定。 2 稳定力矩设计值可按下式计算确定(图 543): MWeG (543-2) 式中 e垂直荷载合力作用线至基础前端的水平距离(m)。 . - - -可修编. 图 543 抗倾覆验算简图 附录 A 土压力系数表 A01 主动土压力系数 K。见表 A01。 表 A01 主动土压力系数 Ka(0,0) () 20 22 25 28 30 32 34 Ka 0 490 0455 0 406 0147 0333 0307 0 283 () 36

29、38 40 42 45 48 50 Ka 0 260 0238 0 217 0198 0172 0147 0 132 . - - -可修编. A02 主动土压力系数aK见表 A02。 附录 B 防火堤基底的摩擦系数 . - - -可修编. 表 B 土对防火堤基底的摩擦系数 土的类别 摩擦系数 粘性土 可塑 025030 硬塑 030035 坚硬 035045 粉土 030040 中砂、 粗砂、 砾砂 040050 碎石土 040060 较质岩 040060 表面粗糙的硬质岩 065075 注:1 对易风化的软质岩和塑性指教 Ip22 牯性土,值应经试验确定; 2 对碎石土,可根据其密实度、填充

30、物状况、风化程度等确定。 本规 X 用词说明 . - - -可修编. 1 为便于在执行本规 X 条文时区别对待,对要求严格程度不同的用词说明如下: 1) 表示很严格,非这样做不可的用词: 正面词采用“必须” ,反面词采用“严禁” 。 2) 表示严格,在正常情况下均应这样做的用词: 正面词采用“应” ,反面词采用“不应”或“不得” 。 3) 表示允许稍有选择,在条件许可时首先应这样做的用词: 正面词采用“宜” ,反面词采用“不宜” ; 表示有选择,在一定条件下可以这样做的用词,采用“可” 。 2 本规 X 中指明应按其他有关标准、规 X 执行的写法为“应符合的规定”或“应按执行” 。 储罐区防火

31、堤设计规 X条文说明 GB 503512005 中华人民 XX 国建设部中华人民 XX 国国家质量监督检验检疫总局 20050317 发布 20050701 实施 . - - -可修编. 32 油罐组防火堤的布置 3 2 1 本条规定油罐罐壁到防火堤内堤脚线的距离, 对于隔堤到油罐罐壁的距离, 设计人员可以根据操作要求确定, . - - -可修编. 规 X 不再作出规定;对于高架立式罐的罐壁到防火堤内侧堤脚线的距离,以注解的形式加以规定。 322 相邻油罐组防火堤外侧堤脚线之间留有不小于 7m 的消防空地,是考虑到消防作业时的通行要求,便于对事故油罐的各个侧面进行扑救,同时,也能减小事故油罐组

32、对相邻油罐组的影响。 323 本条为油罐区成组布置的规定: 1、 2 随着石化工业的发展, 油罐的容量越来越大, 浮顶油罐单体容量已达 150000m3, 固定顶油罐也达到了 20000 m3,所以适当提高油罐组总容量有利于采用大容量油罐,以减少占地。 3 一个油罐组内油罐数量越多,其发生火灾事故的机会就越多;单个油罐容量越大,火灾损失及危害就越大。为了控制一定的火灾 X 围和火灾损失,故根据油罐容量大小规定了最多油罐数量。 4 油罐布置不允许超过 2 排, 主要是考虑油罐失火时便于扑救。 如果布置超过 2 排, 当中间一排油罐发生火灾时,因四周都有油罐,会给扑救工作带来一定困难,也可能导致火

33、灾事故的扩大。储存丙 B 类油品的油罐(尤其是储存润滑油的油罐),其发生火灾事故的几率极小,至今没有发生过火灾事故,所以规定这种油罐可以布置成 4 排,以节约用地和投资。 324 油罐组防火堤内有效容积的规定,主要出发点是: 1 固定顶罐,油品装满半罐的油罐如果发生爆炸,大部分是炸开罐顶,因为罐顶强度相对来说要小些,而且油气聚集在液面以上,一旦火灾爆炸,掀开罐顶是多见的,而罐底和罐壁则往往保持完好。根据有关资料介绍,在 19 起油罐火灾导致油罐破坏的事故中,有 18 起是破坏罐顶的,只有 1 次是爆炸后撕裂罐底的(撕裂原因是罐内中心柱与罐底板焊死)。另外,在一个油罐组内,同时发生一个以上油罐破

34、裂事故的几率极小。因此,规定油罐组防火堤的有效容积不应小于油罐组内一个最大油罐的容积是合适的。 2 浮顶罐(包括内浮顶罐),因浮顶下面基本上没有气体空间,不易发生爆炸。即使发生爆炸,也只能将其浮顶盘掀掉,不会破坏油罐的下部,所以油体流出油罐的可能性小,即使有些油体流出,其量也不大。故防火堤内的有效容积,对于浮顶罐来说,规定不应小于最大储罐容积的二分之一是安全的。 325 防火堤内有效容积对应的计算液面是液体外溢的临界面,故防火堤顶面应比计算液面高出 02m。 防火堤高度下限规定为 10m,是为了防止消防水及泡沫液外溢,同时也是为了限制罐组占地面积过大。 . - - -可修编. 防火堤高度上限规

35、定为 22m,且从外侧计算,主要考虑满足消防操作视野的要求,同时也考虑到单罐容积和储罐组容积越来越大,储罐区占地面积急剧增加,为了减少占地,并尽可能增大防火堤的有效容积。 根据隔堤的定义及其功能,将隔堤的高度规定为 0508m 是合适的,既满足功能要求,又简化了结构尺寸。国外 NF-PA 30 1990 年版规定隔堤的高度为 450mm。 326 防火堤有效容积的计算,设计人员常常有错误发生。为统一计算方法,本条给出计算公式。公式中各参数的图示见图 1。 图 1 防火堤有效容积计算示意 327 防火堤内场地地面设计,是一个比较复杂的问题,难以用一个统一的标准来要求,故本次制订根据调研结果分别对

36、待。 1 对于大部分地区,为了排除雨水或消防水,堤内地面均应有不小于 05的设计地面坡度。调研发现,湿陷性黄土、膨胀土、盐渍土地区,在降雨或喷淋试水后地面产生沉降或膨胀,可能危害到储罐和防火堤的基础安全,所以应采取预防措施,防止水害。南方地区,四季常青,堤内种植草坪,既可降低地面温度,又可美化环境,特作此规定。 . - - -可修编. 2 对土壤渗透性很强的地区,为防止储罐渗漏物对附近地下水源及环境的污染,所以提出堤内地面应采取防渗漏措施的要求。 328 规 X 编制组在调研过程中发现,目前许多储罐区场地的雨水排放设备极不完善,针对储罐区场地雨水排放的问题,规 X 编制组进行了深入的探讨。一致

37、认为:储罐组堤内雨水排放的问题是有关安全的一个重要方面,为彻底解决这个问题,杜绝因此而带来的安全隐患,在规 X 上必须提出严格的要求储罐区必须设置安全可靠的截油排水设备、绝对避免油流的外泄。 329 防火堤内设计地坪如果高于堤外消防道路路面或地面,不仅加大了防火堤高,使防火堤设计断面加大,而且给人以不安全感,而利用地形处理成内低外高的布置方式,则大大提高了储罐组的安全性(如 XX 油库)。所以,当地形条件允许时,宜采用储罐组内地坪下沉、堤外道路高路基的布置方式。 3210 大型储罐在检修时,往往要进出大型起重设备和车辆,如果不设置进出储罐组的道路,势必要在防火堤上扒出缺口,即使再恢复,也难以达

38、到原有的强度和严密性。所以,本条要求设置进出储罐组的坡道,并从防火堤顶越过。 3211 本条规定了储罐组内隔堤的设置,目的是当储罐发生冒顶、漏油事故时,把这些事故控制在较小的 X 围内,使污染及扑救在尽可能小的 X 围内进行,以减小损失。 33 液化石油气、天然气凝液及其他储罐组防火堤、防护墙的布置 331 本条规定全压力式与全冷冻式储罐组防火堤及隔堤的高度: 1 全压力式储罐组内罐体发生事故以后,液体卸压后变为下沉气,在一定高度 X 围内对其进行防护,因此规定防护墙高度宜为 06m、隔墙高度宜为 03m。 2 全冷冻式储罐组防火堤高度通过计算进行确定, 计算时应满足防火堤内有效容积应能容纳储

39、罐组内一个最大储罐的容量、防火堤高度应比计算液面高出 02m、储罐罐壁与防火堤内堤脚线的距离不应小于储罐最高液位高度与防火堤高度之差等条件。 332 本条规定储罐罐壁与防火堤或防护墙内堤脚线之间的距离。 . - - -可修编. 334 本条规定储罐组总容量及储罐数量: 1 全压力式储罐组罐体泄漏的几率主要取决于储罐数量,数量越多,泄漏的可能性越大,故对储罐组内总容积及储罐的数量进行限制。储罐不应超过 2 排是为了方便消防。 2 全冷冻式储罐组内储罐数量不应多于 2 座,主要是考虑减少事故概率,并根据Design and Construction of LPG Installations(API

40、 Std 2510 1995 年版)第 9353 条规定: “两个具有相同基本结构的储罐可置于同一围堤内” 3 本规 X 对其他化工产品储罐组的总容量及储罐数量没作具体的规定,可参照相关的国家标准执行。 335 全冷冻式储罐组,防火堤内有效容积不应小于一个最大储罐的容积,是考虑到一旦罐体发生破裂等事故时,在一定的时间内罐体流出的液体不会马上气化,仍保持液体状态,为把事故液体控制在防火堤的圈闭 X 围内,所以防火堤的有效容积不应小于一个最大储罐的容积。另外,根据Design and Construction of LPG Installations(API Std 2510 1995 年版)第

41、9353 条规定: “围堤内的容积应考虑该围堤内扣除其他容器或储罐占有的容积后,至少为最大储罐容积的 100。 ” 其他液态化工产品储罐组规定其防火堤内有效容积不应小于一个最大储罐的容量,主要是考虑到储罐组内任何一个储罐发生破裂,都能将事故控制在防火堤的 X 围以内,以减少影响。 336 本条规定防火堤、防护墙内的地面处理方式: 1 全压力式和全冷冻式储罐组内地面予以铺砌,主要是考虑到减少地面粗糙度,减少事故时的影响程度,便于清洁和管理。铺砌地面设置不小于 05的坡度,主要是考虑到排水方便。 2 储存酸、碱等腐蚀性介质的储罐组内的地面应作防腐蚀处理,主要是考虑到一旦储罐发生渗漏及破裂等事故,会

42、腐蚀地面及影响到防火堤、防护墙的严密性。 337 储罐组内应设置集水设施及安全可靠的排水设施,以保证雨水及喷淋冷却水能顺利快捷的排出储罐组。 338 本条规定全压力式和全冷冻式储罐组内隔堤的设置,目的是当储罐发生事故时,把这些事故控制在较小的 X围内, 使污染及扑救在尽可能小的 X 围内进行, 以减小损失。 另外, 对全冷冻式储罐组考虑每罐一隔, 还根据了 Design and Construction of LPG Installations(API Std 2510 1995 年版)第 9353 条规定: “在两个储罐间设隔 . - - -可修编. 堤,隔堤的高度应比周围的围堤低 1ft”

43、 4 防火堤的选型与构造 . - - -可修编. 42 构 造 421 规 X 编制组在现场调研中发现,个别罐区砖砌的防火堤墙体砌筑砂浆不饱满,有的防火堤存在很宽的裂缝未修补,存在安全隐患,故作本条规定。 422 本规定是考虑到防火堤的抗滑、抗倾覆的要求,也考虑了基础埋深如果过浅,小动物容易从基础下打洞从而破坏防火堤的密封性。 423 我国国土面积辽阔,气候各不相同,地质条件各有特点,防火堤和防护墙变形缝的设置间距很难给出统一的规定,应由设计人员根据当地材料、气候和地质条件按有关结构设计规 X 确定。 427429 规 X 对砖、砌块防火堤、钢筋混凝土防火堤和浆砌毛石防火堤的构造作出了详细的规

44、定。规 X 编制组在调研中发现为数不少的砖砌防火堤,不管多高,截面都是 370mm,虽然满足构造要求,但并不满足强度和稳定性要求,故本规 X 强调截面设计在满足构造要求的同时,还应进行强度和稳定性计算。 4210、4211 防护墙、隔堤及隔墙由于其使用功能的特点,可不进行强度及稳定性计算,只需满足构造要求。 5 防火堤的强度计算及稳定性验算 51 荷载效应和地震作用效应的组合 511 由于对防火堤的构造要求已能满足刚度要求,不需进行防火堤的变形计算,因此不再进行正常使用极限状态的验算;另外,对于数值很大而出现几率又非常小的油罐破裂时油品对防火堤的冲击力,尽管我们曾与 XX 大学联合进行了专题研

45、究并对其成果完成了技术鉴定,规 X 也没有考虑这种偶然组合。 512514 根据对各种荷载产生的内力的计算结果表明,静液压力产生的内力一般远大于其他荷载产生的内力,因此,公式 512 和 513 两种工况的荷载分项系数和组合值系数,是以静液压力为主要活荷载来规定的。堤身的地震作用、 动液压力和动土压力三者同时出现且均达到标准值的几率很小而且为瞬时作用, 故取组合值0 6,能够满足安全要求。 . - - -可修编. 52 荷载、地震作用及内力计算 522526 这五条中的水平力和弯矩的计算公式,只适用于计算截面取在地面线以上或地面线上的情况。至于地面线以下的截面内力,可根据地面线处的截面内力进行

46、换算确定。 523 防火堤内培土静压力的计算公式是根据库伦主动土压力理论并按培土与水平夹角为-推导出来的。见规 X图 523。延长培土倾斜面交堤面延长线于 A点,分别计算堤背为 AB 而填土面为水平时主动土压力强度分布图形ABC 及以堤背为 AB 而填土表面倾角为-时的主动土压力强度分布图形 ABD 这两个图形交于 F 点, 则实际计算截面以上主动土压力强度分布图形可近似取图中的 ABDFA,它的面积就是主动土压力 PT的近似值。对于粉土、粉质粘土及粘土,可将其内摩擦角直接代入公式计算,即不考虑它们的粘聚力,仍按无粘性土计算主动土压力,这样使计算简化,并偏于安全。 524 规 X 给出的防火堤

47、水平地震作用的计算方法分为下列两种情况: 1 由于钢筋混凝土堤的高厚比一般都大于 4,在水平地震作用下,以弯曲变形为主。规 X 给出的计算公式524-1524-4 就是以纯弯曲变形理论为基础确定的。为了简化计算,选用了比较简单的振型函数(图 2): 图 2 振型函数曲线 . - - -可修编. 而按纯弯曲悬臂杆理论计算出的精确值为: . - - -可修编. mEIH21515. 3 前者仅高出后者 42,故以式(1)作为振型函数来计算钢筋混凝土防火堤的水平地震作用,其精确度能够满足工程要求。 规 X 中式 524-1 的振型参与系数1由下式计算得出: 6025. 18342)2cos1 ()2

48、cos1 ()()(0200201HHHHdxHXdxHXdxyxmydxxm (3) 钢筋混凝土防火堤的基本周期一般都小于 01s,考虑到地震反应曲线在 T1001s 之间的数值离散性较大,虽然现行抗震规 X 中将此区间加工成一条斜线,但实际上人为因素较大,故为安全起见,本规 X 仍然取地震影响系数最大值max偏于安全。 2 砖石砌体防火堤一般为变截面的悬臂结构。其高厚比一般在 24 之间。经过实算,接近于纯剪切变形。规 X中表达水平地震作用的分布值公式 524-5 就是按等截面纯剪切理论推导出来的,其振型函数为: HXaxy2sin)( (4) 基本振型参与系数1由下式计算得出: 27.

49、1442sin2sin)()()()(0200201HHHHdxHXmdxHXmdxxyxmdxxyxm (5) 系数14都是通过积分推导出来的,其表达式见式(6)式(9),也可以直接查本规 X 表 524。 HXHXasin221 (6) . - - -可修编. HXaHXHXHXHXa12222cos42sin)(2)(2121 (7) HXa2cos23 (8) HXHXHHHXaa)2sin2cos21 (4124 (9) 5 2 5 水平动液压力的计算公式是参照 室外给水排水和燃气热力工程抗震设计规 X (GB 500322003)第 6 2 3条。该条公式中的水平地震加速度与重力加

50、速度的比值用 125max代替;水平动液压力系数的值取自该条表 62。3。 5 2 6 水平动土压力的计算公式是参照 室外给水排水和燃气热力工程抗震设计规 X (GB 500322003)第 6 2 4条。由于动土压力的合力与动土压力分布值成正比,为了简化计算,本规 X 把上述规 X 动土压力分布值直接换算成动土压力合力值;该条公式中 的水平地震加速度与重力加速度的比值用 125max代替。 为了简化计算,取动土压力的力矩为 04HT,偏于安全。 53 强度计算 532 防火堤截面强度计算应符合现行国家规 X 的有关规定。具体地讲,对于砖、砌块及毛石防火堤,应根据砌体结构设计规 X(GB 50

51、0032001)第 541 条和 542 条规定计算截面强度;对于钢筋混凝土防火堤,应根据混凝土结构设计规 X(GB 500102002)第 734 条规定进行正截面偏心受压承载力计算, 并根据第 75 节的规定进行斜截面抗剪计算。 533 防火堤地基承载力计算以及地基强度计算应分别符合建筑地基基础设计规 X(GB 500072002)第 5 章及第 8 章的有关规定。 . - - -可修编. 54 稳定性验算 542 被动土压力计算公式 542-3 是根据朗肯被动土压力理论公式,考虑了粘性土和非粘性土两种情况。由于达到被动极限平衡状态所需的防火堤的位移是相当大的, 按太沙基的试验为 4的墙高, 照此推断, 当基础埋深 0 8m时, 就需要 32mm, 这显然不允许, 所以计算出来的被动土压力必须打个折扣, 本规 X 取被动土压力折减系数0 3。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号