钻孔动力头的PLC控制课程设计说明书

上传人:枫** 文档编号:570965672 上传时间:2024-08-07 格式:PDF 页数:14 大小:499.06KB
返回 下载 相关 举报
钻孔动力头的PLC控制课程设计说明书_第1页
第1页 / 共14页
钻孔动力头的PLC控制课程设计说明书_第2页
第2页 / 共14页
钻孔动力头的PLC控制课程设计说明书_第3页
第3页 / 共14页
钻孔动力头的PLC控制课程设计说明书_第4页
第4页 / 共14页
钻孔动力头的PLC控制课程设计说明书_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《钻孔动力头的PLC控制课程设计说明书》由会员分享,可在线阅读,更多相关《钻孔动力头的PLC控制课程设计说明书(14页珍藏版)》请在金锄头文库上搜索。

1、目录 一、控制任务 . 1 二、该动力头的加工过程 . 2 三、I/O 地址的分配及接线图 . 2 (1)PLC 的输入/输出点分配表 . 2 (2)PLC 控制接线图 . 3 四、 电气控制电路图 . 3 五、控制梯形图 . 3 六、指令表 . 3 七、说明书 . 3 1、控制方案的选择 . 3 2、PLC 如何选型 . 8 3、分析所编的程序并阐述系统的工作原理 . 13 八、参考资料 . 14 钻孔动力头的 PLC 控制 一、控制任务 (1) 动力头在原位时开关 ST3 受压,加启动命令后接通电磁阀F1,动力头快进. (2) 动力头碰到限位开关 ST1 后,接通电磁阀 F1 和 F2,动

2、力头由快进转为工进。 (3) 动力头碰到限位开关 ST2 后,停止进给,延时 10S. (4) 延时时间到,接通 F3,动力头快速退回。 (5) 当原点限位开关 ST3 接通时,动力头快速退回结束. 根据上述控制要求,用 PLC 编制程序实现对钻孔动力头的控制。 二、该动力头的加工过程 三、 I/O 地址的分配及接线图 (1) PLC 的输入/输出点分配表 输入信号 名称 代号 输入点编号 启动按钮 启动 X0 停止按钮 停止 X1 原点限位开关 ST3 X2 快进限位开关 ST1 X3 工进限位开关 ST2 X4 输出信号 名称 代号 输出编号 正转接触器 KM1 Y0 正转接触器 KM2

3、Y1 反转接触器 KM3 Y2 (2)PLC 控制接线图 四、 电气控制电路图 五、PLC 控制梯形图 六、PLC 控制指令语句表 七、说明书 1、控制方案的选择 (1)为何采用 PLC 控制 可编程序控制器 PLC 是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别是 PLC 的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学;调试与查错也都很方便.用户在购

4、到所需的 PLC 后,只需按说明书的提示,做少量的接线和简易的用户程序编制工作,就可灵活方便地将 PLC 应用于生产实践。 (2)控制继电器存在的缺点 控制继电器存在的缺点如作条件下进行的,容易损坏.而且继电器的触点容易产生电弧,甚至会熔在一起产生误操作,引绝大多数控制继电器都是长期磨损和疲劳工起严重的后果.再者,对一个具体使用的装有上百个继电器的设备,其控制箱将是庞大而笨重的。在全负荷运载的情况下,大的继电器将产生大量的热及噪声,同时也消耗了大量的电能.并且继电器控制系统必须是手工接线、安装,如果有简单的改动,也需要花费大量时间及人力和物力去改制、安装和调试.今天继电器已应用到家庭及工业控制

5、的各个领域.他们比以往的产品具有更高的可靠性.但是,这也是随之带来的一些问题。 固体继电器的缺点 A、导通后的管压降大,可控哇或双向控哇的正向降压,可达 12V,大功率晶体管的饱和压降也在 12 之间,一般功率场效应管的导通电阻也较机械触点的接触电阻大。 B、半导体器件关断后仍可有数微安至数毫安的漏电流,因此不能实现理想的电隔离。 C、由于管压降大,导通后的功耗和发热量也大,大功率固体继电器的体积远远大于同容量的电磁继电器,其输出功率与环境和外壳温度有关。 D、电子元、器件的温度特性和电子路线的抗干扰能力较差,耐辐射能力也较差,如不采取有效措施,则工作可靠性低。 E、通常固体继电器设计成单刀单

6、掷形式,这样比较容易实现,多组和多组转换结构需要用几个相互连接和适当连锁的固体继电器,这些固体继电器基本上是积木式堆叠在一起,形成一个占地较大空间的复杂装置。大功率固体继电器,由于需用散热片,就进一步增加了所有空间和成本。 F、通常用于功率控制的固体继电器是针对负载或设计成交流输出或设计成直流输出,而不设计成既和用于交流负载,又可用于支流负载. (3)可编程序控制器的优势、特点及功能 可编程控制器以体积小功能强大所著称,它不但可以很容易地完成顺序逻辑、运动控制、定时控制、计数控制、数字运算、数据处理等功能,而且可以通过输入输出接口建立与各类生产机械数字量和模拟量的联系,从而实现生产过程的自动控

7、制。特别是现在,由于信息、网络时代的到来,扩展了 PLC 的功能,使它具有很强的联网通讯能力,从而更广泛地应用于众多行业。 A、生产过程的监控和管理 PLC 可以通过通迅接口与显示终端和打印机等外设相连.显示器作为人机界面(HMI)是一种内含微处理芯片的智能化设备,它与 PLC 相结合可取代电控柜上众多的控制按钮、选择开关、信号指示灯,及生产流程模拟屏和电控柜内大量的中间继电器和端子排.所有操作都可以在显示屏上的操作元件上进行。 PLC 可以方便、快捷地对生产过程中的数据进行采集、处理,并可对要显示的参数以二进制、十进制、十六进制、ASCII 字符等方式进行显示.在显示画面上,通过图标的颜色变

8、化反应现场设备的运行状态,如阀门的开与关,电机的启动与停止,位置开关的状态等.PID 回路控制用数据、棒图等综合方法反映生产过程中量的变化,操作人员通过参数设定可进行参数调整,通过数据查询可查找任一时刻的数据记录,通过打印可保存相关的生产数据,为今后的生产管理和工艺参数的分析带来便利. B、闭环过程控制 以往对于过程控制的模拟量均采用硬件电路构成的 PID 模拟调节器来实现开、闭环控制.而现在完全可以采用 PLC 控制系统,选用模拟量控制模块,关于时间继电器的用途,其功能由软件完成,系统的精度由位数决定,不受元件影响,因而可靠性更高 ,容易实现复杂的控制和先进的控制方法,可以同时控制多个控制回

9、路和多个控制参数.例如生产过程中的温度、流量、压力、速度等 . C、顺序控制 顺序控制是 PLC 最基本、应用最广泛的领域。所谓的顺序控制,就是按照工艺流程的顺序,在控制信号的作用下,使得生产过程的各个执行机构自动地按照顺序动作。由于它还具有编程设计灵活、速度快、可靠性高、成本低、便于维护等优点,所以在实现单机控制、多机群控制、生产流程控制中可以完全取代传统的继电器接触器控制系统.它主要是根据操作按扭、限位开关及其它现场给来的指令信号和传感器信号,控制机械运动部件进行相应的操作,从而达到了自动化生产线控制。比较典型应用在自动电梯的控制、管道上电磁伐的自动开启和关闭、皮带运输机的顺序启动等。例如

10、我分厂的原料混料系统就是利用了 PLC 的顺序控制功能。 D、运动位置控制 PLC 可以支持数控机床的控制和管理, 在机械加工行业,可编程控制器与计算机数控(CNC)集成在一起,用以完成机床的运动位置控制,它的功能是接受输入装置输入的加工信息,经处理与计算,发出相应的脉冲给驱动装置,通过步进电机或伺服电机,使机床按预定的轨道运动,以完成多轴伺服电机的自控.目前以用于控制无心磨削、冲压、复杂零件分段冲裁、滚削摸削等应用中。 (4)PLC 与继电器控制两种控制方法的不同之处 A、控制方式: 继电器的控制是采用硬件接线实现的,是利用继电器机械触点的串联或并联延时继电器的滞后动作等组合形成控制逻辑,只

11、能完成既定的逻辑控制。 PLC 采用存储逻辑,其控制逻辑是以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可,称软接线 . B、控制速度 继电器控制逻辑是依靠触点的机械动作实现控制,工作频率低,毫秒级,机械触点有抖动现象。 PLC 是由程序指令控制半导体电路来实现控制,速度快,微秒级,严格同步,无抖动。 C、延时控制 继电器控制系统是靠时间继电器的滞后动作实现延时控制,而时间继电器定时精度不高 ,受环境影响大,调整时间困难。 PLC 用半导体集成电路作定时器,时钟脉冲由晶体振荡器产生,精度高,调整时间方便,不受环境影响。 (5)PLC(可编程控制器)与 MC(微机)控制的区别 微型计算机

12、是在以往计算机与大规模集成电路的基础上发展起来的,其最大特点是运算速度快,功能强,应用范围广,在科学计算,科学管理和工业控制中都得到广泛应用。所以说,MC 是通用计算机。 而 PLC 是一种为适应工业控制环境而设计的专用计算机.但人工业控制的角度来看,PLC 又是一种通用机,只要选配对应的模块便可适用于各种工业控制系统,而用户只需改变用户程序即可满足工业控制系统的具体控制要求.而 MC 就必须根据实际需要考虑抗干扰问题及硬件软件的设计,以适应设备控制的专门需要。所以说 MC 是通用的专用机. 基于以上理解,便可以得出 MC 与 PLC 具有以下几点区别: PLC 抗干扰性能为 MC 高 。 P

13、LC 编程比 MC 编程简单 . PLC 设计调试周期短 。 PLC 的 I/0 响应速度慢,有较大的滞后现象(MS),而 MC 的响应速度快(US)。 PLC易于操作,人员培训时间短; 而MC则较难人员培训时间长。 PLC 易于维修,MC 则较困难 。 随着 PLC 技术的发展,其功能越来越强;同时 MC 也逐渐提高和改进两者之间将相互渗透,使 PLC 与 MC 的差距越来越小,但在今后很长一段时间内,两者将继续共存。在一个控制系统中,PLC将集中于功能控制上,而 MC 将集中于信息处理上。 2、PLC 如何选型 在 PLC 系统设计时,首先应确定控制方案,下一步工作就是PLC 工程设计选型

14、。 工艺流程的特点和应用要求是设计选型的主要依据。PLC 及有关设备应是集成的、标准的,按照易于与工业控制系统形成一个整体,易于扩充其功能的原则选型所选用 PLC 应是在相关工业领域有投运业绩、成熟可靠的系统,PLC 的系统硬件、软件配置及功能应与装置规模和控制要求相适应。熟悉可编程序控制器、功能表图及有关的编程语言有利于缩短编程时间,因此,工程设计选型和估算时,应详细分析工艺过程的特点、控制要求,明确控制任务和范围确定所需的操作和动作,然后根据控制要求,估算输入输出点数、所需存储器容量、确定 PLC 的功能、外部设备特性等,最后选择有较高性能价格比的 PLC 和设计相应的控制系统. (1)输

15、入输出(I/O)点数的估算 I/O 点数估算时应考虑适当的余量,通常根据统计的输入输出点数,再增加 1020的可扩展余量后,作为输入输出点数估算数据。实际订货时,还需根据制造厂商 PLC 的产品特点,对输入输出点数进行圆整。 (2)存储器容量的估算 存储器容量是可编程序控制器本身能提供的硬件存储单元大小,程序容量是存储器中用户应用项目使用的存储单元的大小,因此程序容量小于存储器容量。设计阶段,由于用户应用程序还未编制,因此,程序容量在设计阶段是未知的,需在程序调试之后才知道。为了设计选型时能对程序容量有一定估算,通常采用存储器容量的估算来替代。 存储器内存容量的估算没有固定的公式,许多文献资料

16、中给出了不同公式,大体上都是按数字量 I/O 点数的 1015 倍,加上模拟 I/O 点数的 100 倍,以此数为内存的总字数 (16 位为一个字) ,另外再按此数的 25考虑余量. (3)控制功能的选择 该选择包括运算功能、控制功能、通信功能、编程功能、诊断功能和处理速度等特性的选择。 A、运算功能 简单 PLC 的运算功能包括逻辑运算、计时和计数功能;普通PLC 的运算功能还包括数据移位、比较等运算功能;较复杂运算功能有代数运算、数据传送等;大型 PLC 中还有模拟量的 PID 运算和其他高级运算功能。随着开放系统的出现,目前在 PLC 中都已具有通信功能,有些产品具有与下位机的通信,有些

17、产品具有与同位机或上位机的通信,有些产品还具有与工厂或企业网进行数据通信的功能.设计选型时应从实际应用的要求出发,合理选用所需的运算功能.大多数应用场合,只需要逻辑运算和计时计数功能,有些应用需要数据传送和比较,当用于模拟量检测和控制时,才使用代数运算,数值转换和 PID 运算等。要显示数据时需要译码和编码等运算. B、控制功能 控制功能包括 PID 控制运算、前馈补偿控制运算、比值控制运算等,应根据控制要求确定.PLC 主要用于顺序逻辑控制,因此,大多数场合常采用单回路或多回路控制器解决模拟量的控制,有时也采用专用的智能输入输出单元完成所需的控制功能, 提高 PLC的处理速度和节省存储器容量

18、.例如采用 PID 控制单元、高速计数器、带速度补偿的模拟单元、ASC 码转换单元等。 C、通信功能 大中型 PLC 系统应支持多种现场总线和标准通信协议(如TCP/IP),需要时应能与工厂管理网(TCP/IP)相连接。通信协议应符合 ISO/IEEE 通信标准,应是开放的通信网络。 PLC 系统的通信接口应包括串行和并行通信接口(RS2232C/ 422A/423/485)、RIO 通信口、工业以太网、常用 DCS 接口等;大中型 PLC 通信总线(含接口设备和电缆)应 1:1 冗余配置,通信总线应符合国际标准,通信距离应满足装置实际要求. PLC 系统的通信网络中,上级的网络通信速率应大于

19、 1Mbps,通信负荷不大于 60。PLC 系统的通信网络主要形式有下列几种形式: 、PC 为主站,多台同型号 PLC 为从站,组成简易 PLC 网络; 、1 台 PLC 为主站,其他同型号 PLC 为从站,构成主从式 PLC网络; 、 PLC 网络通过特定网络接口连接到大型 DCS 中作为 DCS 的子网; 、专用 PLC 网络(各厂商的专用 PLC 通信网络)。 为减轻 CPU 通信任务,根据网络组成的实际需要,应选择具有不同通信功能的(如点对点、现场总线、工业以太网)通信处理器。 D、编程功能 离线编程方式:PLC 和编程器公用一个 CPU,编程器在编程模式时,CPU 只为编程器提供服务

20、,不对现场设备进行控制。完成编程后,编程器切换到运行模式,CPU 对现场设备进行控制,不能进行编程。离线编程方式可降低系统成本,但使用和调试不方便。在线编程方式:CPU 和编程器有各自的 CPU,主机 CPU 负责现场控制,并在一个扫描周期内与编程器进行数据交换,编程器把在线编制的程序或数据发送到主机,下一扫描周期,主机就根据新收到的程序运行。这种方式成本较高,但系统调试和操作方便,在大中型 PLC 中常采用. 五种标准化编程语言:顺序功能图(SFC)、梯形图(LD)、功能模块图(FBD)三种图形化语言和语句表(IL)、结构文本(ST)两种文本语言。选用的编程语言应遵守其标准(IEC61131

21、23),同时,还应支持多种语言编程形式,如 C,Basic 等,以满足特殊控制场合的控制要求。 E、诊断功能 PLC 的诊断功能包括硬件和软件的诊断.硬件诊断通过硬件的逻辑判断确定硬件的故障位置,软件诊断分内诊断和外诊断。通过软件对 PLC 内部的性能和功能进行诊断是内诊断,通过软件对PLC 的 CPU 与外部输入输出等部件信息交换功能进行诊断是外诊断。 PLC 的诊断功能的强弱, 直接影响对操作和维护人员技术能力的要求,并影响平均维修时间. F、处理速度 PLC 采用扫描方式工作.从实时性要求来看,处理速度应越快越好, 如果信号持续时间小于扫描时间,则 PLC 将扫描不到该信号,造成信号数据

22、的丢失。 处理速度与用户程序的长度、 CPU 处理速度、 软件质量等有关。目前,PLC 接点的响应快、速度高,每条二进制指令执行时间约0.20.4Ls,因此能适应控制要求高、相应要求快的应用需要。扫描周期 (处理器扫描周期)应满足:小型PLC的扫描时间不大于0。5ms/K;大中型 PLC 的扫描时间不大于 0。2ms/K. (4)机型的选择 PLC 按结构分为整体型和模块型两类, 按应用环境分为现场安装和控制室安装两类;按 CPU 字长分为 1 位、4 位、8 位、16 位、32 位、64 位等.从应用角度出发,通常可按控制功能或输入输出点数选型。 3、分析所编的程序并阐述系统的工作原理 (1

23、)按下启动按钮,第一逻辑行中的串联接触点 X000 闭合,M0 置1,并联接触点 M0 闭合,M0 自锁。同时第二逻辑行中的串联接触点 M0 闭合,Y000 置 1,Y000 的常开触点 KM1 闭合,快速电机和慢速电机启动,且快速电机拖动慢速电机,钻孔动力头快速进给。 (2)动力头碰到限位开关 ST1 后,第三逻辑行的串联接触点 X003闭合,M1 置 1,并联接触点 M1 闭合,M1 自锁。同时第四逻辑行的串联接触点 M1 闭合,Y001 置 1,Y001 的常闭触点 KM2 断开,快速电机停止,慢速电机继续,钻孔动力头工进。 (3)动力头碰到限位开关 ST2 后,第五逻辑行的串联接触点

24、X004闭合,M2 置 1,并联接触点 M2 闭合,M2 自锁,T0 开始计时,同时第一、五逻辑行的串联接触点 M0 断开,进给电机停转。延时开始. (4)10s 计时结束,第六逻辑行的串联接触点 T0 闭合,Y002 置 1,Y002 的常开触点 KM2 闭合,快速电机和慢速电机反转,且快速电机拖动慢速电机,钻孔动力头快速退回. (5)动力头碰到原点限位开关 ST3 后,第五逻辑行的串联接触点X002 断开,Y002 置 0,Y002 的常开触点 KM3 断开,快速电机和慢速电机停转,钻孔动力头停止进给。 八、参考资料 (1)赵明等 工厂电气控制设备 ,北京.机械工业出版社 1998 第二版 (2)上海工业自动化仪表研究所三菱超小型 F1 系列可编程控制器 1990 (3)王兆义 可编程控制器的选型问题 上海电器技术 NO2:2933 (4)宫淑贞 可编程控制器原理及应用 人民邮电出版社, 2002,163168 (5)谢克明 可编程控制器原理与程序设计 电子工业出版社, 2003,238239 (6)高钦和 可编程控制器应用技术与设计实例 人民邮电出版社,2004,158162

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号