shetpptFAMUFSU College of EngineeringFlorida State University

上传人:博****1 文档编号:570623605 上传时间:2024-08-05 格式:PPT 页数:18 大小:1.14MB
返回 下载 相关 举报
shetpptFAMUFSU College of EngineeringFlorida State University_第1页
第1页 / 共18页
shetpptFAMUFSU College of EngineeringFlorida State University_第2页
第2页 / 共18页
shetpptFAMUFSU College of EngineeringFlorida State University_第3页
第3页 / 共18页
shetpptFAMUFSU College of EngineeringFlorida State University_第4页
第4页 / 共18页
shetpptFAMUFSU College of EngineeringFlorida State University_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《shetpptFAMUFSU College of EngineeringFlorida State University》由会员分享,可在线阅读,更多相关《shetpptFAMUFSU College of EngineeringFlorida State University(18页珍藏版)》请在金锄头文库上搜索。

1、Modeling of CNT based composites: Numerical IssuesN. Chandra and C. Shet FAMU-FSUCollegeofEngineering,FloridaStateUniversity,Tallahassee,FL32310AMMLObjectiveTodevelopananalyticalmodelthatcanpredictthemechanicalpropertiesofshort-fibercompositeswithimperfectinterfaces.Tostudytheeffectofinterfacebondst

2、rengthoncriticalbondlengthlcTostudytheeffectofbondstrengthonmechanicalpropertiesofcomposites.ApproachTomodeltheinterfaceascohesivezones,whichfacilitatestointroducearangeofinterfacepropertiesvaryingfromzerobindingtoperfectbindingAMMLFig.Shearlagmodelforalignedshortfibercomposites.(a)representativesho

3、rtfiber(b)unitcellforanalysis(a)(b)ShearLagModel*Prelude1ThegoverningDEWhosesolutionisgivenbyWhereDisadvantages TheinterfacestiffnessisdependentonYoungsmodulusofmatrixandfiber,henceitmaynotrepresentexactinterfaceproperty.kremainsinvariantwithdeformationCannotmodelimperfectinterfaces*Originalmodeldev

4、elopedbyCox1andKelly21Cox,H.L.,J.Appl.Phys.1952;Vol.3:p.722Kelly, A., Strong Soilids, 2nd Ed., Oxford UniversityPress, 1973,Chap.5.AMMLPrelude2CohesiveZoneModelCZMisrepresentedbytraction-displacementjumpcurvestomodeltheseparatingsurfacesAdvantagesCZM can create new surfaces. Maintains continuity con

5、ditions mathematically, despite the physical separation. CZM represents physics of the fracture process at the atomic scale.Eliminates singularity of stress and limits it to the cohesive strength of the the material.It is an ideal framework to model strength, stiffness and failure in an integrated m

6、anner.AMMLModifiedShearlagModelThegoverningDEIftheinterfacebetweenfiberandmatrixisrepresentedbycohesivezone,thenEvaluatingconstantsbyusingboundaryconditions,stressesinfiberisgivenbyAMMLComparisonbetweenOriginalandModifiedShearLagModelVariationofstress-strainresponseintheelasticlimitwithrespecttopara

7、meterbTheparameterb definedbydefinestheinterfacestrengthintwomodelsthroughvariablek.InoriginalmodelInmodifiedmodelinterfacestiffnessisgivenbyslopeoftraction-displacementcurvegivenbyInoriginalmodelkisinvariantwithloadinganditcannotbevariedInmodifiedmodelkcanbevariedtorepresentarangeofvaluesfromperfec

8、ttozerobondingAMMLComparisonwithExperimentalResultTheaveragestressinfiberandmatrixfaraappliedstraineisgivenbyThenbyruleofmixturethestressincompositescanbeobtainedasFig.Atypicaltraction-displacementcurveusedforinterfacebetweenSiCfiberand6061-AlmatrixForSiC-6061-T6-AlcompositeinterfaceismodeledbyCZMmo

9、delgivenbyWithN=5,andk0=1,k1=10,k2=-36,k3=72,k4=-59,k5=12.Taking smax=1.8 sy,wheresyisyieldstressofmatrixanddmax=0.06dcAMMLFig. Comparison of experimental 1 stress-strain curve for Sic/6061-T6-Alcompositewithstress-straincurvespredictedfromoriginalshearlagmodelandCZMbasedShearlagmodel.1Dunn,M.L.andL

10、edbetter,H.,Elastic-plasticbehavioroftexturedshort-fibercomposites,Actamater.1997;45(8):3327-3340Theconstitutivebehaviorof6061-T6Almatrix21canberepresentedbyComparison(contd.)yieldstress =250MPa,andhardeningparametersh =173MPa,n=0.46.Youngsmodulusofmatrixis76.4GPa.YoungsmodulusofSiCfiberisEf of423GP

11、aResultcomparisonExperimental1Youngsmodulusis105GPaandfailurestrengthisaround515MPaEc115104.41540522(GPa)FailureStrength(MPa)VariableOriginalModifiedAMMLFEAModelThe CNT is modeled as a hollow tube with a length of 200 , outer radius of 6.98 and thickness of 0.4 . CNT modeled using 1596 axi-symmetric

12、 elements. Matrix modeled using 11379 axi-symmetric elements.Interface modeled using 399 4 node axisymmetric CZ elements with zero thicknessComparisonwithNumericalResultsFig.(a)Finiteelementmeshofaquarterportionofunitmodel(b)aenlargedportionofthemeshnearthecurvedcapofCNTAMMLLongitudinalStressinfiber

13、atdifferentstrainlevelInterfacestrength=5000MPaInterfacestrength=50MPaAMMLShearStressinfiberatdifferentstrainlevelInterfacestrength=5000MPaInterfacestrength=50MPaAMMLCriticalBondLengthl/2Table1.Criticalbondlengthsforshortfibersoflength200andfordifferentinterfacestrengthsandinterfacedisplacementparam

14、eterdmax1value0.15.AMMLCriticalbondlengthvarieswithinterfaceproperty(Cohesivezoneparameters(smax,dmax1)Whentheexternaldiameterofasolidfiberisthesameasthatofahollowfiber,then,foranygivenlengththeloadcarriedbysolidfiberismorethanthatofhollowfiber.Thus,itrequiresalongercriticalbondlengthtotransferthelo

15、adAthigherdmax1thelongitudinalfiberstresswhenthematrixbeginstoyieldislower,hencecriticalbondlengthreducesForsolidcylindricalfibers,atlowinterfacestrengthof50MPa,whenthefiberlengthis600andabove,thecriticalbondlengthoneachendofthefiberexceedssemi-fiberlengthforsomevaluesdmax1tendingthefiberineffective

16、intransferringtheloadinterfacestrengthis5000MPaVariationofCriticalBondLengthwithinterfacepropertyinterfacestrengthis50MPaAMMLTable:VariationofYoungsmodulusofthecompositewithmatrixyoungsmodulus,volumefractionandinterfacestrengthEffectofinterfacestrengthonstiffnessofCompositesYoungsModulus(stiffness)o

17、fthecompositenotonlyincreaseswithmatrixstiffnessandfibervolumefraction,butalsowithinterfacestrengthAMMLEffectofinterfacestrengthonstrengthofCompositesTableYieldstrength(inMPa)ofcompositesfordifferentvolumefractionandinterfacestrengthFibervolumefraction=0.02Fibervolumefraction=0.05Yieldstrength(whenm

18、atrixyields)ofthecompositeincreaseswithfibervolumefraction(andmatrixstiffness)butalsowithinterfacestrengthWithhigherinterfacestrengthhardeningmodulusandpostyieldstrengthincreasesconsiderablyAMMLEffectofinterfacedisplacementparameterdmax1onstrengthandstiffnessFig.Variationofstiffnessofcompositemateri

19、alwithinterfacedisplacementparameterdmax1fordifferentinterfacestrengths.Fig.Variationofyieldstrengthofthecompositematerialwithinterfacedisplacementparameterdmax1fordifferentinterfacestrengths.AstheslopeofT-d curvedecreases(withincreaseindmax1),theoverallinterfacepropertyisweakenedandhencethestiffnes

20、sandstrengthreduceswithincreasingvaluesofdmax1.Whentheinterfacestrengthis50MPaandfiberlengthissmalltheyoungsmodulusandyieldstrengthofthecompositematerialreachesalimitingvalueofthatofmatrixmaterial.AMMLEffectoflengthofthefiberonstrengthandstiffnessFig.Variationofyieldstrengthofthecompositematerialwit

21、hdifferentfiberlengthsanddifferentinterfacestrengthsFig.VariationofYoungsmodulusofthecompositematerialwithdifferentfiberlengthsandfordifferentinterfacestrengthsForagivenvolumefractionthecompositematerialcanattainoptimumvaluesformechanicalpropertiesirrespectiveofinterfacestrength.Forcompositeswithstr

22、ongerinterfacetheoptimumpossiblevaluescanbeobtainedwithsmallerfiberlengthWithlowinterfacestrengthlongerfiberlengthsarerequiredtoobtainhighercompositeproperties.DuringprocessingitisdifficulttomaintainlongerCNTfiberstraigth.AMMLConclusion1.Thecriticalbondlengthorineffectivefiberlengthisaffectedbyinter

23、face strength. Lower the interface strength higher is theineffectivelength.2.In addition to volume fraction and matrix stiffness, interfaceproperty, length and diameter of the fiber also affects elasticmodulusofcomposites.3.Stiffness and yield strength of the composite increases withincreaseininterfacestrength.4.Inordertoexploitthesuperiorpropertiesofthefiberindevelopingsuperstrongcomposites,interfacesneedtobeengineeredtohavehigherinterfacestrength.AMML

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号