数量关系精讲

上传人:汽*** 文档编号:570185570 上传时间:2024-08-02 格式:PPT 页数:59 大小:134.50KB
返回 下载 相关 举报
数量关系精讲_第1页
第1页 / 共59页
数量关系精讲_第2页
第2页 / 共59页
数量关系精讲_第3页
第3页 / 共59页
数量关系精讲_第4页
第4页 / 共59页
数量关系精讲_第5页
第5页 / 共59页
点击查看更多>>
资源描述

《数量关系精讲》由会员分享,可在线阅读,更多相关《数量关系精讲(59页珍藏版)》请在金锄头文库上搜索。

1、第二章第二章 数量关系数量关系第一节第一节 数量关系的作用和内容数量关系的作用和内容第二节第二节 题型介绍和解题方法题型介绍和解题方法第三节第三节 数量关系的规律和例题解析数量关系的规律和例题解析(一一)第四节第四节 练习题和解析练习题和解析一、数量关系练习题之一和解析一、数量关系练习题之一和解析 (一一)数量关系练习题之一数量关系练习题之一数字推理练习题之一数字推理练习题之一 数学运算练习题之一数学运算练习题之一 第一节第一节 数量关系的作用和内容数量关系的作用和内容一、数量关系的作用一、数量关系的作用二、数量关系的内容二、数量关系的内容一、数量关系的作用一、数量关系的作用在科学技术高速发展

2、的信息社会中,国家公务员从事的是一种高效、科学、规范的信息化管理工作。因此,国家公务员应具备对大量的信息进行迅速、准确的接收与处理的能力,而这些信息中有很大一部分是用数学表达或者是与数字相关的,国家公务员应能够正确地理解和发现数量之间蕴含的规律,并能进行快速的数学运算。只有具备了这些基本能力,才能胜任其工作,提高其工作效率。这也是数量关系测验在公务员录用考试中重要性之所在。二、数量关系的内容二、数量关系的内容数量关系测验主要是测验应试者对数量关系的理解与计算的能力,体现了一个人抽象思维的发展水平。数量关系测验是几乎所有的智力问题专家都十分看重的,并把它作为预测人们在事业上能否成功的重要标准。数

3、量关系的理解能力有多种表现形式,因而对其测量的方法也是多种多样的。它在行政职业能力测验中主要内容是从数字推理和数学运算两个角度来考查应试者对数量关系的理解能力和反应速度。数量关系测验含有速度与难度的双重性质。在速度方面,要求应试者反应灵活,思维敏捷;在难度方面,其所涉及的数学知识或原理都不超过小学与初中水平,甚至多数是小学水平。如果时间充足,获得正确答案是不成问题的。但在一定的时间限制下,要求应试者答题既快又准,这样,个人之间的能力差异就显现出来了。可见,该测验难点并不在于数字与计算上,而在于对规律与方法的发现和把握上,它实际测查的是个人的抽象思维能力。因此,解答数量关系测验题不仅要求应试者具

4、有数字的直觉能力,还需要具有判断、分析、推理、运算等能力。第二节第二节 题型介绍和解题方法题型介绍和解题方法一、数量关系的题型介绍一、数量关系的题型介绍数量关系测验包括两种类型的试题,一种是数字推理数字推理题题,另一种是数学运算题数学运算题,下面我们分别介绍这两种题型。二、数量关系的解题方法二、数量关系的解题方法1.数字推理数字推理的题型介绍的题型介绍数字推理题由于排除了语言文化因素的影响,减少了其他因素的干扰,因而测查的完全是一个人的抽象思维能力。这类题目由题干与选项组成。题干是由一组按某种规律排列的数字组成的(其中缺少一个数字),选项为4个数字,要求应试者分析题干数列的排列规律,根据规律推

5、导出空缺中(一般用小括号表示)应填入的数字,然后从四个选项所列出的数字中选出应填的一个来。在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在头脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。只有当你把这一列数字判断

6、为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。有时一道题之所以解不出来,

7、是因为我们的思路走进了“死胡同”,无法变换角度思考问题。此时,与其“卡”死在这里,不如抛开这道题先做别的题。在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。在做这些难题时,有一个基本思路:“尝试错误”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。2.数学运算数学运算的题型介绍的题型介绍数量关系中的第二种题型是数学运算题,主要考查应试者的运算能力。这类试题难易程度差异较大,有的只需心算就能完成,有的则要经过演算才能正确作答。这类试题的出题方式有两种:一种是呈现一道算式;一种是呈现一段表述数量关系的文字,要

8、求应试者迅速、准确地计算出答案,并判断所计算的结果与被选项中的哪一项相同,则该选项就是正确答案。数学运算的试题一般比较简短,其知识内容和原理多限于小学数学中的加、减、乘、除四则运算。尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要应试者算得既快又准。为了做到这一点,应当注意以下三个方面:一是掌握一些常用的数学运算技巧、方法和规律,尽量多用简便算法。二是准确理解和分析文字表达,正确把握题意,切忌被题中一些枝节所诱导,落入出题者的“圈套”中。如:一条悬挂着的绳长3米,小王每一次向上爬1米,停一下,又下滑半米。问按照此爬法,小王几次能爬上去?答案:次次次次。如果认为每一次上爬半米,选6次

9、,就中了出题者的“圈套”。实际上前4次爬上2米,第5次又爬了1米就到顶了。三是熟记一些基本公式。二、数量关系的解题方法二、数量关系的解题方法数量关系测验题的解答,要把握下面三个方法:(1)心算胜于笔算。该项测验无论是A类应试者,还是B类应试者,平均一道题需40秒45秒的时间作答,可见对速度的要求之高了。在数量关系测验中,运算题一般比较简单,采用心算可以节省时间,将十分有限的时间尽量集中用于较难试题的解答上。(2)先易后难。在规定时间内,每道题虽难度不一样,但可先通过观察完成简单题的解答,使心理更加平稳,更有利于难度较大的题的解答。如果因解答一题受阻,而失去了解答更多试题的机会,就会造成不应有的

10、丢分。(3)运用速算方法。不少数学运算题可以采用简便的速算方法,而不需要全演算。为此,在解题前,先花一点时间考查有没有简便算法来解题,这点时间的花费是值得的,也是必要的。如果找到简便算法,会大大减少解题所用的时间,达到事半功倍的效果。第三节第三节 数量关系的规律和例题数量关系的规律和例题解析解析(一一)一、数字推理的规律和例题解析一、数字推理的规律和例题解析二、数学运算的规律和例题解析二、数学运算的规律和例题解析(以下以下17为算式题,为算式题,823为文字题为文字题)一、数字推理的规律和例题解一、数字推理的规律和例题解析析w1.自然数列自然数列 w2.奇数数列奇数数列w3.偶数数列偶数数列w

11、4.等差数列等差数列w5.等比数列等比数列 w6.加法数列加法数列 w7.减法数列减法数列w8.乘法数列乘法数列w9.除法数列除法数列w10.平方数列平方数列 w11.立方数列立方数列w12.质数数列质数数列 w13.分数数列分数数列w14.单、双数项数列单、双数项数列 w 15.小数数列小数数列w16.根号根号( )数列数列w17.幂数列幂数列二、数学运算的规律和例题解析二、数学运算的规律和例题解析w1.凑整法凑整法w2.观察尾数法观察尾数法w3.未知法未知法 w4.互补数法互补数法w5.基准数法基准数法w6.求等差数列的和求等差数列的和 w7.因式分解计算法因式分解计算法 w8.快速心算法

12、快速心算法w9.加加“1”计算法计算法 w10.减减“1”计算法计算法 w11.大小数判断法大小数判断法 w12.爬绳计算法爬绳计算法w13.余数相加计算法余数相加计算法w14.月日计算法月日计算法w15.比例分配计算法比例分配计算法w16.倍数计算法倍数计算法w17.年龄计算法年龄计算法w18.鸡兔同笼计算法鸡兔同笼计算法w19.人数计算法人数计算法w20.工程计算法工程计算法w21.路程计算法路程计算法w22.资金计算法资金计算法w23.对分计算法对分计算法例1:4,5,6,7,()解析:按自然数列规律,()内应是8。故本题正确答案为A。例2:2,3,5,8,()返回解析:该题初看不知是什

13、么规律,但用减法变化一下,即显示出其规律了。3-2=1,5-3=2,8-5=3,这是个自然数列,那么下一个数应该是?-8=4,?=12。故本题的正确答案为C。例1:1,3,5,7,()解析:按奇数数列规律,()内应是9。故本题正确答案为B。例2:2,3,6,11,()返回解析:本题初看不知是什么规律,但用减法变化一下后即显示出其规律来了。3-2=1,6-3=3,11-6=5,这是奇数数列规律,那么下一个数是?-11=7,则11+7=18。故本题正确答案为A。例1.2,4,6,8,()解析:根据偶数数列规律,()内的数字应为10。故本题正确答案为D。例2.4,6,10,16,24,()返回解析:

14、本题初看前四个数中,前面两个数之和等于第三个数,但这不是本题的规律,因为到了第五个数就不对了,应该用别的规律。可试着用减法,即6-4=2,10-6=4,16-10=6,24-16=8,这样一减规律就显示出来了,这是个偶数数列,那么下一个数为?-24=10,10+24=34。故本题正确答案为D。例1:4,8,16,32,()解析:根据等比数列规律,这是一个公比为2的等比数列,()内的数为322=64。故本题的正确答案为C。例2:-2,6,-18,54,()解析:在此题中,相邻两个数相比6(-2)=-3,(-18)6=-3,54(-18)=-3,可见,其公比为-3。据此规律,()内之数应为54(-

15、3)=-162。故本题的正确答案为A。例3:0,1,3,7,15,31,()解析:从题干中各数字之间的关系来看,后一个数减去前一个数后分别为:1-0=1,3-1=2,7-3=4,15-7=8,31-15=16,那么下一个差数是32,()内的数为31+32=63,这就是二级等比数列。故本题正确答案为D。例4:12,36,8,24,11,33,15,()解析:本题初看较乱,但仔细分析可得出这是一道两个数为一组的题,在每组数中,后一个数是前一个数的3倍,也可称为公比为3的等比数列,153=45。故本题正确答案为D。例5:8,8,6,2,()解析:在该题中,8-8=0,8-6=2,6-2=4,2-?=

16、6,即?=-4。故本题正确答案为A。例1:1,4,7,10,()解析:在本题中4-1=3,7-4=3,10-7=3,这是道公差为3的等差数列题,()内之数应为3+10=13。故本题正确答案为C。例2:2,4,8,14,22,()解析:如果仅从本题前3个数字就断定为后一个数是前一个数的两倍的规律,那到第4、5个数就不能运用了。可试着用减法,4-2=2,8-4=4,14-8=6,22-14=8,这就成了公差为2的二级等差数列了,下一个数为?-22=10,依此规律,()内之数为22+10=32。故本题正确答案为B。例3:2,4,3,5,6,8,7,()返回解析:本题初看较乱,不知是什么规律,但认真分

17、析一下,用减法将第2个数减第一个数,4-2=2,第四个数减第三个数5-3=2,第6个数减第5个数8-6=2,可见这就成了公差为2的等差数列了,那么()内之数必然是7+2=9。故本题的正确答案为D。例4:12,34,56,78,()解析:这是道等差数列题,如果看成是自然数列而选A就错了,这是公差为22的等差数列。因为4个数之间的差均为22,所以()内之数应为78+22=100。故本题的正确答案为B。例1:1,0,1,1,2,(),5解析:本题可用加法数列解答。在本题中,1+0=1,0+1=1,1+1=2,可见前两个数之和等于第三个数,5-2=3。故本题正确答案为C。例2:4,3,1,12,9,3

18、,17,5,()A.12B.13C.14D.15返回解析:本题初看较难,亦乱,但仔细分析,便不难发现,这是一道三个数字为一组的题,在每组数字中,第一个数字是后两个数字之和,即4=3+1,12=9+3,那么依此规律,()内的数字就是17-5=12。故本题的正确答案为A。例1:5,3,2,(),1解析:这是一道前两个数之差等于第三个数的减法数列,即5-3=2,3-2=1,那么,依此规律,()内的数就是2-1=1。故本题正确答案为A。例2:19,4,18,3,16,1,17,()返回解析:本题初看较难,亦乱,但仔细分析便可发现,这是一道两个数字为一组的减法规律的题,19-4=15,18-3=15,1

19、6-1=15,那么,依此规律,()内的数为17-15=2。故本题的正确答案为D。例1:1,2,2,4,8,()解析:本题是一道前两个数之积等于第三个数的乘法数列,即12=2,22=4,24=8,依此规律,()内的数就是48=32。故本题的正确答案为C。例2:2,5,2,20,3,4,3,36,5,6,5,150,8,5,8,()解析:本题初看较难,但仔细分析后便发现,这是一道四个数字为一组的乘法数列题,在每组数字中,前三个数相乘等于第四个数,即252=20,343=36,565=150,依此规律,()内之数则为858=320。故本题正确答案为B。例3:6,14,30,62,()A.85B.92

20、C.126D.250返回解析:本题仔细分析后可知,后一个数是前一个数的2倍加2,14=62+2,30=142+2,62=302+2,依此规律,()内之数为622+2=126。故本题正确答案为C。例1:8,4,2,2,1,()解析:这是一道前一个数除以后一个数等于第三个数的除法数列题,即84=2,42=2,22=1,依此规律,()内之数则为21=2。故本题正确答案为A。例2:12,2,2,3,14,2,7,1,18,3,2,3,40,10,(),4返回解析:本题初看很乱,数字也多,但仔细分析后便可看出,这道题每组有四个数字,且第一个数字被第二、三个数字连除之后得第四个数字,即1222=3,142

21、7=1,1832=3,依此规律,()内的数字应是40104=1。故本题的正确答案为D。例1:1,4,9,16,()解析:这是一道自然数列1、2、3、4的平方的题,那么()内的数应为5的平方,即25。故本题的正确答案为C。例2:2,3,10,15,26,35,()解析:本题是道初看不易找到规律的题,可试着用平方与加减法规律去解答,即2=12+1,3=22-1,10=32+1,15=42-1,26=52+1,35=62-1,依此规律,()内之数应为72+1=50。故本题的正确答案为C。例3:1,2,6,15,31,()返回A.45B.50C.52D.56解析:这也是道初看不易找到规律的题。可用减法

22、去试,2-1=1,6-2=4,15-6=9,31-15=16,那么,这些差数就是自然数列的平方了。即12=1,22=4,32=9,42=16,那么,依此规律,()内之数应是52+31=56。故本题的正确答案为D。例4:3,7,47,2207,()解析:本题可用前一个数的平方减2得出后一个数,这就是本题的规律。即7=32-2,47=72-2,22072-2=4870847,本题可直接选D,因为A、B、C只是四位数,可排除。而四位数的平方是7位数。故本题的正确答案为D。例1:1,8,27,64,()解析:这是道自然数列立方的题,13=1,23=8,33=27,43=64,那么,()内的数应是53=

23、125。故本题的正确答案为B。例2:4,11,30,67,()返回解析:这道题有点难,初看不知是何种规律,但仔细观之,可分析出来,4=13+3,11=23+3,30=33+3,67=43+3,这是一个自然数列的立方分别加3而得。依此规律,()内之数应为53+3=128。故本题的正确答案为C。例1:2,3,5,7,()解析:所谓质数是指只能被1和它本身整除之整数,也叫素数。根据这个定义,7后面的质数应为11,而不能选9,因为9除了被1和它本身整除外,还可以被3整除。故本题的正确答案为A。例2:22,24,27,32,39,()返回A.40B.42C.50D.52解析:本题初看不知是何规律,可试用

24、减法,后一个数减去前一个数后得出:24-22=2,27-24=3,32-27=5,39-32=7,它们的差就成了一个质数数列,依此规律,()内之数应为11+39=50。故本题正确答案为C。例1:1/11,1/13,1/15,()解析:分数数列之类的题,当分子相同时,可只从分母中找规律,即11、13、15,这是个公差为2的等差数列。依此规律,()内的分母应为15+2=17。故本题的正确答案为D。例2:2/51,5/51,10/51,17/51,()解析:本题中分母相同,可只从分子中找规律,即2、5、10、17,这是由自然数列1、2、3、4的平方分别加1而得,()内的分子为52+1=26。故本题的

25、正确答案为C。例3:20/9,4/3,7/9,4/9,1/4,()返回解析:这是一道分数难题,分母与分子均不同。可将分母先通分,最小的分母是36,通分后分子分别是204=80,412=48,74=28,44=16,19=9,然后再从分子80、48、28、16、9中找规律。80=(48-28)4,48=(28-16)4,28=(16-9)4,可见这个规律是第一个分子等于第二个分子与第三个分子之差的4倍,依此规律,()内分数应是16=(9-?)4,即(36-16)4=5。故本题的正确答案为A。例1:6,9,7,10,8,11,(),(),14解析:这道题初看很乱,但仔细分析即可明确这道题分为单数项

26、与双数项数列,其中单数项为6、7、8,是自然数列,下一个数即第一个()内应为9,再看双数项9、10、11也是个自然数列,下一个数即第二个()内应为12。故本题的正确答案为B。例2:23,46,48,96,54,108,99,()解析:本题的每个双数项都是本组单数项的2倍,依此规律,()内的数应为992=198。本题不用考虑第2与第3,第4与第5,第6与第7个数之间的关系。故本题的正确答案为C。例3:9,29,16,66,25,127,36,()返回解析:这道题初看有点乱。但仔细分析一下,就可发现这是道双重数列的题,即分单数项和双数项题。先看单数项9、16、25、36,是自然数列3、4、5、6的

27、平方,再看双数项,29=33+2,66=43+2,127=53+2。依此规律,()内之数应为63+2=218。故本题的正确答案为C。例1:11,22,43,74,115,()A.155B.156C.158D.166解析:此题初看较乱,又是整数又是小数。遇到此类题时,可将小数与整数分开来看,先看小数部分,依次为01,02,03,04,05,那么,()内的小数应为06,这是个自然数列。再看整数部分,即后一个整数是前一个数的小数与整数之和,2=1+1,4=2+2,7=4+3,11=7+4,那么,()内的整数应为11+5=16。故本题的正确答案为D。例2:116,825,2736,6449,()A.6

28、525B.12564C.12581D.12501解析:此题先看小数部分,16、25、36、49分别是4、5、6、7自然数列的平方,所以()内的小数应为82=64,再看整数部分,1=13,8=23,27=33,64=43,依此规律,()内的整数就是53=125。故本题的正确答案为B。例3:,()解析:在这个小数数列中,前三个数皆能被除尽,依此规律,在四个选项中,只有C能被除尽。故本题的正确答案为C。返回例1:2,3,2,(),6解析:由于2=4,所以,这个中的数字就成了自然数列2、3、4、()、6了,内的数应当就是5了。故本题的正确答案应为B。例2:25,16,(),4解析:根据的原理,25=5

29、,16=4,4=2,5、4、()、2是个自然数列,所以()内之数为3。故本题的正确答案为C。例3:1/2,2/5,3/10,4/17,()返回解析:该题中,分子是1、2、3、4的自然数列,()内分数的分子应为5。分母2、5、10、17一下子找不出规律,用后一个数减去前一个数后得5-2=3,10-5=5,17-10=7,这样就成了公差为2的等差数列了,下一个数则为9,()内的分数的分母应为17+9=26。故本题的正确答案为C。例1:16,27,16,(),1解析:这是道难题,用加减乘除法都找不出正确答案,可试着用幂(表示一个数自乘若干次所得的积)来解答。16=24,27=33,16=42,5=5

30、1,1=60,这就成了一个降幂排列的自然数列。故本题的正确答案为A。例2:2,12,36,80,150,()返回解析:这是一道难题,也可用幂来解答之。2=212,12=322,36=432,80=542,150=652,依此规律,()内之数应为762=252。故本题的正确答案为B。例1:的值:解析:该题是小数凑整。先将0.213+0.787=1,0.384+0.616=1,然后将5+1+4+8+2=20。故本题的正确答案为A。例2:9955的值:解析:这是道乘法凑整的题。如果直接将两数相乘则较为费时间,如果将99凑为100,再乘以55,那就快多了,只用心算即可。但要记住,在得数5500中还需要

31、减去55才是最终的得数,不然马马虎虎选A就错了。故本题正确答案为B。例3.4/2-1/5-3/4-4/5-1/4的值:解析:这是道分数凑整的题,可先将(1/5+4/5)+(3/4+1/4)=2心算出来,然后将4/2=2心算出来,2-2=0。故本题正确答案为C。例4.19999+1999+199+19的值:解析:此题可用凑整法运算,将每个加数后加1,即19999+1=20000,1999+1=2000,199+1=200,19+1=20,再将四个数相加得22220,最后再减去加上的4个1,即4,22220-4=22216。故本题正确答案为D。例1.2768+6789+7897的值:解析:这道题如

32、果直接运算,则需花费较多的时间。如果用心算,将其三个尾数相加,得24,其尾数是4。再看4个选项,B、C、D的尾数不是4,只有A符合此数。故本题的正确答案为A。例2.2789-1123-1234的值:解析:这是道运用观察尾数法计算减法的题。尾数9-3-4=2,选项A、D可排除。那么B、C两个选项的尾数都是2,怎么办?可再观察B、C两选项的首数,因为2-1-1=0,还不能确定,再看第二位数,7-1-2=4,只有选项B符合。故本题的正确答案为B。例3.891745810的值:解析:这道题首先要观察尾数,三个尾数相乘,150=0,因此,将A、B选项排除。那么C、D两选项中如何选择出对的一项呢?因为3个

33、三位数相乘,至少得出6位数的积,如果3个首位数相乘之积大于10的话,最多可得9位数的积。C选项只有5位数,所以被淘汰,而D选项是9位数,符合得数要求。故本题的正确答案为D。例1.1758015的值:A.1173B.1115C.1177D.未给出解析:这道除法题的被除数尾数是0,除数的尾数是5,因此,其商数的尾数必然是双数,因四个选项中的A、B、C三项尾数皆为单数,所以都应排除,实际上没有给出正确值。故本题的正确答案为D。例2.2004年“五一”黄金周期间,在全国实现的390亿元的旅游收入中,民航客运收入16亿元,比2002年同期增长18.5%,铁路客运收入亿元,比2002年同期增长13.5%。

34、下列叙述正确的是:年与2002年“五一”黄金周期间,全国民航与铁路客运收入上大体持平年“五一”黄金周期间,全国民航与铁路客运收入合计27亿元C.未给出年与2002年“五一”黄金周期间的客运收入上,民航与铁路相比增加率多5%解析:A选项是错的,因为2004年民航与铁路客运收入都增长10%以上。B选项也是错的,2004年“五一”黄金周期间两项收入合计为16+11.4=27.4(亿元),而不同于2002年同期的27亿元。以上两项排除后,还应看看D选项是否正确,如果错了,当然就选C。但本题中,民航与铁路客运量相比,增加率为18.5%-13.5%=5%,D是正确的。可见C选项是起干扰作用的。故本题的正确

35、答案为D。例3.5067+2433-5434的值:A.3066B.2066C.1066D.未给出解析:此题的四个选项中,除D之外的A、B、C三个选项,其后三位数完全相同,只注意观察首位数谁是正确的就可以了。5+2-5=2,D选项在这里起干扰作用。故本题的正确答案为B。例1.384078192的值:解析:此题可以将3840192=20,7820=1560。故本题的正确答案为C。例2.4689-1728-2272的值:解析:此题可先用心算将两个减数相加,1728+2272=4000。然后再从被减数中减去减数之和,即4689-4000=689。故本题的正确答案为C。例3.840(424)的值:解析:

36、此题可先将84042=20用心算得出,然后再将已去掉括号后的乘号变成除号,204=5。故本题的正确答案为A。例1.1997+1998+1999+2000+2001的值:解析:遇到这类五个数按一定规律排列的题,可用中间数即1999作为基准数,而题中的1997=1999-2,1998=1999-1,2000=1999+1,2001=1999+2,所以该题的和为19995+(1+2-2-1)=119995=9995。在这里不必计算,可将凑整法使用上,19995=220005-5=9995。故本题的正确答案为C。例2.2863+2874+2885+2896+2907的值:解析:该题初看不那么好找规律,

37、但仔细分析后可见,每相邻的两个数之间的差为11,也可取中间数2885作为基准数。那么2863=2885-22,2874=2885-11,2896=2885+11,2907=2885+22。所以,该题之和为28855+(22+11-22-11)=28855=29005-75=14425。故本题的正确答案为B。例1.2+4+6+22+24的值:解析:求等差数列之和有个公式,即(首项+末项)项数2,项数=(末项-首项)公差+1。在该题中,项数=(24-2)2+1=12,数列之和=(2+24)122=156。故本题的正确答案为D。例2.1+2+3+99+100的值:解析:该题看起来较为复杂,计算从1到

38、100之和,如果用1+99=100,2+98=100等之法计算,那将费时费力,而用求等差数列之和的公式计算,很快便可出结果。即(100-1)1+1=991+1=100,那么该数列之和即为(1+100)2100=5050。故本题正确答案为C。例3.10+15+20+55+60的值:解析:该题的公差为5,依前题公式,项数=(60-10)5+1=11,那么该题的值即(10+60)211=3511=385。故本题的正确答案为B。例1.222-100-112的值:解析:这类题可先运用平方差公式解答。A2-b2=(a+b)(a-b),222-112=(22+11)(22-11)=363,然后再363-10

39、0=263。故本题正确答案为C。例2.(33+22)2的值:解析:此类题可用平方公式去解答。(a+b)2=a2+2ab+b2,即332+23322+222=1089+1452+484=3025。故本题的正确答案为B。例3.2832+2844的值:解析:此题中含有相同因数,可用公式ab+ac=a(b+c)来计算,即28(32+44)=2876=2128。故本题的正确答案为A。例4.如果N=2357121,则下列哪一项可能是整数?解析:在四个选项中,A选项的分母110可分解为2511,然后带入A选项即是(792357121)(2511),这样分子和分母中的2、5可以对消,分子中的12111=11,

40、所以,分子就变成793711,分母是1,商为整数,而B、C、D则不能。故本题正确答案为A。8.快速心算法例1.做一个彩球需用8种颜色的彩纸,问做同样的4个彩球需用多少种颜色的彩纸?解析:仍用8种颜色的彩纸,A起干扰作用,切莫中了出题人的圈套。故本题的正确答案为D。例2.甲的年龄是乙年龄的1倍,乙是30岁,问甲是多少岁?解析:本题说的甲与乙实际上是同岁,即30岁,切莫将1倍视为多1倍,即60岁,那就中了出题人的圈套。故本题的正确答案为B。例1一条街长200米,街道两边每隔4米栽一棵核桃树,问两边共栽多少棵核桃树?解析:本题如果选A、B或选C都不对,因为(2004+1)2=102。应注意两点:一是

41、每边起始点要种1棵,这样每边就要种2004+1=51(棵);二是两边共种多少棵,还需乘2,即512=102(棵)。故本题正确答案为D。种树棵数或放花盆数=总长间距+1例2.在一个圆形池子边上每隔2米摆放一盆花,池周边共长80米,共需摆多少盆花?解析:这道题因为池周边是圆形的,长80米,第一盆既是开始放的一盆,同时又是最后的一盆,所以不用加1盆,802=40(盆)。在一条没有终端的圆形池边种树或放花的盆数=总长间距。故本题的正确答案为B。例1.小马家住在第5层楼,如果每层楼之间楼梯台阶数都是16,那么小马每次回家要爬多少个楼梯台阶?解析:住在5层的住户,因为1层不需要上楼梯,只需爬25层的楼梯台

42、阶就可以了。所以本题的答案为16(5-1)=64。故本题的正确答案为C。楼梯台阶数=层间台阶数(层数-1)例2.小刘家在某楼四门栋2层与4层各有一套住房。每层楼梯的台阶数都是18,那么小刘每次从4层的住房下到2层的住房,共需下多少个楼梯台阶?解析:因为小刘只下了两层的楼梯台阶,可直接用(4-2)18=36即可。故本题的正确答案为A。例1.请判断4/5,2/3,5/7,7/9的大小关系A.4/57/95/72/3B.7/94/55/72/3C.5/77/94/52/3D.2/34/55/77/9解析:在该题中分母不同,先通分,最小公倍数为315,四个分数变为4/5=252/315,2/3=210

43、/315,5/7=225/315,7/9=245/315。因此,4/57/95/72/3。故本题的正确答案为A。例2.请判断0,-1,90,6-1的大小关系A.6-10-190B.906-10-1C.0-16-190D.0-1906-1解析:本题0与-1的大小是好判断的,难在后两个数的大小上。需知道90=1,6-1=1/6。因此,在这四个数中90最大,6-1次之,再次是0,最小是-1。故本题的正确答案为B。例,11/3三个数的最大数是哪一个?解析:=3.141,4=2,所以,CBA。故本题正确答案为C。例1.一架单杠上挂着一条4米长的爬绳,小赵每次向上爬1米后又滑下半米来。问小赵需几次才能爬上

44、单杠?A.8次B.7次C.6次D.5次解析:此题如果选A就中了出题人的圈套,实应选7次。因为爬了6次后,已经上了3米。最后一次爬1米就到头了,不再往下滑了。故本题正确答案为B。例2.青蛙在井底向上跳,井深6米,青蛙每次跳上2米,又滑下1米,问青蛙需几次方可跳出?A.7B.6C.5D.4解析:本题的原理同前题,不能选B,因为前4次共跳上4米,第五次就跳出井来了。故本题的正确答案为C。例1.今天是星期二,问再过36天是星期几?A.1B.2C.3D.4解析:这类题的算法是,天数7的余数+当天的星期数,即367=5余1,1+2=3。故本题的正确答案为C。例2.今天是星期一,从今天算起,再过96天是星期

45、几?A.2B.4C.5D.6解析:本题算法同前题,967=13余5,5+1=6。故本题正确答案为D。例1.假如今天是2004年的11月28日,那么再过105天是2005年的几月几日?A.2005年2月28日B.2005年3月11日C.2005年3月12日D.2005年3月13日解析:计算月日要记住几条法则。一是每年的1、3、5、7、8、10、12这七个月是31天,二是每年的4、6、9、11这四个月是30天,三是每年的2月,如果年份能被4整除,则该年的2月是29天(如2004年),如果该年的年份不能被4整除,则是28天(如2005年)。记住这些特殊的算法,到时按月日去推算即可。具体到这一题,11

46、月是30天,还剩2天,12月、1月是31天,2月是28天,那么2+31+31+28=92(天),105-92=13(天),即3月13日。故本题正确答案为D。例2.才过生日的小荷今年28岁,她说了,她长了这么大,按公历才过了六次生日,问她生在哪月哪日?A.3月2日B.1月31日C.2月28日D.2月29日解析:小荷生在2月29日,因为四年才有一次生日可过,所以她出生以来只过了六次生日。故本题的正确答案为D。例1.一个村的东、西、南、北街的总人数是500人,四条街人数比例为1234,问北街的人数是多少?A.250B.200C.220D.230解析:四条街总人数可分成1+2+3+4=10(份),每份

47、为50人。北街占4份,504=200(人)。故本题的正确答案为B。例2.一条长360米的绳子,按234的比例进行分截,最短的一截是多长?A.60B.70C.80D.90解析:原理同上题,一份长为:360(2+3+4)=40(米),最短的一截为402=80(米)。故本题的正确答案为C。例1.甲是乙的三倍,乙是丙的1/6,问甲是丙的几分之几?A.1/2B.1/3C.1/4D.1/5解析:在此题中,甲=3乙,乙=1/6丙。因此,甲=31/6丙=1/2丙。故本题的正确答案为A。例2.老张藏书14000册,老马藏书18000册。如果老张想将自己的藏书成为老马藏书的3倍,那么,他还应购进多少册书?A.30

48、000B.40000C.45000D.50000解析:本题比较简单,可先将14000与18000两数字的三个零省去,那么183=54,再减去老张现有的书的册数,54-14=40,再加上省去的三个零,即40000册。故本题的正确答案为B。例1.女童小囡今年4岁,妈妈今年28岁,那么,小囡多少岁时,妈妈的年龄是她的3倍?A.10B.11C.12D.13解析:今年妈妈比小囡大28-4=24(岁),当妈妈年龄是小囡年龄的3倍时,妈妈的年龄比小囡大3-1=2(倍),即24岁正好是小囡当时年龄的2倍。据此可推导出,小囡在242=12(岁)时,妈妈的年龄是她的3倍。验证一下,4+8=12,28+8=36。故

49、本题正确答案为C。例2.今年父亲是儿子年龄的9倍,4年后父亲是儿子年龄的5倍。那么,今年父子年龄分别是多少岁?A.40,5B.35,6C.36,4D.32,6解析:此题从直观就可得知答案。只有(36+4)(4+4)=5,其他三个数分别加4,皆不得5。其实,这道题的答案一目了然,题中一开始就说了“父亲是儿子年龄的9倍”,四个选项中,只有C符合条件。故本题的正确答案为C。例1.一笼中的鸡和兔共250条腿,已知鸡的只数是兔只数的3倍,问笼中共有多少只鸡?A.50B.75C.100D.125解析:设鸡的只数为x,按腿计算,鸡腿为2x,鸡为兔只数的3倍,即兔是鸡的13,兔子是4条腿,兔子的腿数为13x4

50、,即2x+13x4=250,103x=250,x=75(只)。故本题正确答案为B。例2.一段公路上共行驶106辆汽车和两轮摩托车,他们共有344只车轮,问汽车与摩托车各有多少辆?A.68,38B.67,39C.66,40D.65,41解析:该题的四个备选答案,其辆数合计为106辆,但汽车是4只车轮,摩托车是2只车轮。在四个选项中,只有C为664+402=344(只)车轮。故本题正确答案为C。例1.一车间女工是男工的90%,因生产任务的需要又调入女工15人,这时女工比男工多20%,问此车间男工有多少人?A.150B.120C.50D.40解析:求男工数,可设男工为x,已知女工是男工的90%,即女

51、工为x,所以,x+15=(1+0.2)x,0.3x=15,x=50(人)。故本题的正确答案为C。例2.某剧团男女演员人数相等,如果调出8个男演员,调进6个女演员后,女演员人数是男演员人数的3倍,该剧团原有多少女演员?A.20B.15C.30D.25解析:从题中可知,女演员调进6人后,女演员人数则是男演员调出8人后的3倍。故可设原男女演员皆为x,即x+6=(x-8)3,x=15。所以,女演员原来是15人。故本题的正确答案为B。例1.一件工程,A队单独做300天完成,B队单独做200天完成。那么,两队合作需几天完成?A.120B.125C.130D.135解析:该题的基本公式为,工作总量(假设为1

52、)工作效率=工作时间,即1(1300+1200)=120。故本题的正确答案为A。例2.一个水池有两根水管,一根进水,一根排水。如果单开进水管,10分钟将水池灌满,如果单开排水管,15分钟把一池水放完。现在池子是空的,如果两管同时开放,多少分钟可将水池灌满?A.20B.25C.30D.35解析:公式基本同上,1(110-115)=30。故本题正确答案为C。例1.甲乙两辆汽车从两地相对开出,甲车时速为50公里,乙车时速为58公里,两车相对开2个小时后,它们之间还相距80公里。问两地相距多少里?A.296B.592C.298D.594解析:本题依据的基本公式为,两地距离=两车已走的距离+车距。这道题

53、要细心,给出的是公里,问的是里,(50+58)2+802=592(里),如果选A就中了出题人的圈套。故本题的正确答案为B。例2.A、B两人从同一起跑线上绕300米环形跑道跑步,A每秒钟跑6米,B每秒钟跑4米,问第二次追上B时A跑了多少圈?A.9B.8C.7D.6解析:因为是环形跑道,当A第一次追上B时,实际上A比B多跑了一圈(300米),当第二次追上B时,A比B则需多跑两圈,共600米。A比B每秒多跑6-4=2(米),多跑600米需时为6002=300(秒)时间。所以可列式为:追及距离速度差=追及时间。设圈数为x,则x=6米/秒300秒300米/圈=6圈。故本题正确答案为D。例1.某协会开年会

54、,需预算一笔钱作经费,其中有发给与会者生活补贴占10%,会议资料费用1500元,其他费用占20%,还剩下2000元。问该年会的预算经费是多少元?A.7000B.6000C.5000D.4000解析:可将经费设为x,则01x+1500+02x=x-2000,03x+1500=x-2000,3500=07x,所以x=5000。故本题正确答案为C。例2.某部门原计划召开为期10天的重要会议,预算费用为32000元,由于议程安排紧凑,会期比计划缩短了两天,实花费用节省了25%。其中,仅住宿一项就占会议节省费用的60%,问会议住宿费节省了多少元?A.3500元B.3800元C.4800元D.4000元解

55、析:设节省住宿费为x,则x=3200025%60%=4800(元)。这道题有些绕弯,但不难,只要搞清预算的25%是多少元,即为节约的费用,再乘以60%即可。故本题正确答案为C。例1有一根513米长的绳子,每次都剪掉绳子的2/3,那么剪了3次之后还剩多少米?解析:这道数学运算题,连续剪了3次,会涉及立方的问题。每次剪掉2/3后,就剩下1/3,连续3次,就是(1/3)3=1/27。513米的1/27为19米。故本题的正确答案为B。例2.某大单位有一笔会议专用款,第一次用去15后,就规定每召开一次会议可用去上次会议所剩款的15,连续开了四次会议后剩余款为万元。问该单位这笔会议专用款是多少万元?A.1

56、00B.120C.140D.160解析:每次会议用掉1/5,剩下4/5,连续四次是(4/5)4=256/625,连续四次后剩余款为万元,40.96256/625=25600256=100(万元)。该题数字稍大,运算中要细心。故本题的正确答案为A。1235,242,249,256,()A、261B、262C、263D、26420,3,8,15,()A、23B、24C、25D、2636,10,7,12,8,14,(),()A、9,16B、9,13C、10,11D、11,1443,4,6,9,(),18A、11B、13C、15D、1754,28,9,65,16,126,25,()A、214B、215

57、C、216D、217答案1题解析:本题是一个等差数列题,公差为7。所以,()内应为256+7=263。故本题正确答案为C。2题解析:本题的差数不等,为3、5、7,但差数为奇数列,下个差数应为9。所以,()内应为15+9=24。故本题正确答案为B。3题解析:本题可按单数项与双数项数列解析。单数项为6、7、8,第一个()内之数应为9;双数项为10、12、14,是等差为2的数列,第二个()内之数应为14+2=16。故本题正确答案为A。4题解析:本题由三组不同的数字组成,其中第一组数字的差为1,第二组数字的差为3,可见是奇数规律,那么,第三组数字的差数应该是5,本题已给出被减数为18,那么减数应该为1

58、8-5=13。故本题正确答案为B。5题解析:本题由四组不同的数字组成,其中每组数字的第一个数为4、9、16、25,分别为22、32、42、52。第二个数为33+1=28,43+1=65,53+1=126,那么,63+1=217。故本题正确答案为D。返回15214+4369+3786+2631A、13B、14C、15D、1628589A、7564B、7565C、7665D、7865答案32345+5432+4532+3254A、15562B、15563C、15564D、2556348999-2345-1655A、4999B、3999C、4998D、498955958691986A、135B、20

59、7C、141D、1446求22+24+26+42的和。A、348B、350C、352D、3547一条街长200米,每隔5米栽一棵树,问共需栽多少棵树?A、40B、41C、42D、438假如今天是2003年的12月1日,那么再过75天是2004年的几月几日?A、2月13日B、2月14日C、2月15日D、2月16日9一件工程,甲单独做20天完成,乙单独做30天完成,问甲、乙合作几天完成?A、10B、11C、12D、1310甲、乙两车同时从两地相对开出,甲车每小时行50公里,乙车每小时行40公里,两车开2小时后还相距30公里,问两地间的距离有多少里?A、210B、420C、310D、5201题解析:

60、本题为小数凑整法。找其规律,小数点后面的数字相加可以变成整数。0.214+0.786=1,0.369+0.631=1,那么,前面整数为5+4+3+2=14,总和为16。故本题的正确答案为D。2题解析:本题是乘法凑整法。8590-85=7565。故本题的正确答案为B。3题解析:本题是大数字连加,可用观察尾数法。先将个位数相加,5+2+2+4=13,所以,选择尾数为3的数字,四个选项中B、D尾数为3,再观察首数,将2+5+4+3=14,首数为1。故本题的正确答案为B。4题解析:本题利用互补数法。可先将2345+1655=4000,然后再用8999-4000=4999。故本题正确答案为A。5题解析:

61、本题可用互补数法。先用1986去除5958,得3,再用369=207。故本题的正确答案为B。6题解析:本题所用公式为(首项+末项)2项数,项数=(末项-首项)公差+1,所以,本题的项数=(42-22)2+1=11,答案为(22+42)211=352。故本题的正确答案为C。7题解析:本题可用加“1”法。因为种树时开头应种一棵,所以,所种的树为200米5+1=41棵。故本题的正确答案为B。8题解析:本题是计算月日的。首先,公历的12月与1月均为31天,本题中12月已经过了一天,还剩30天,一月为31天,加起来为61天。75-61=14,即是2月14日。故本题的正确答案为B。9题解析:本题为工程计算

62、题,其公式为1(1/甲用天数+1/乙用天数),所以,甲乙合作所用天数为1(120+130)=12(天)。故本题的正确答案为C。10题解析:本题可用里程计算法,公式为两地距离=两车已行距离+车距。两车已行的路程为(40+50)2=180(公里),车距为30公里。两地距离为180+30=210(公里)。但应试者需注意,本题给的是公里而所求之数为里,这是出题人耍花样,切勿“上当”,不然就会选错答案的。1公里=2里,所以,本题问的两地距离多少里,应该是2102=420(里)。故本题的正确答案为B。返回1.2,1,4,3,(),5A、1B、2C、3D、62.1,8,9,4,(),1/6A、3B、2C、1

63、D、1/33.22,35,56,90,(),234A、162B、156C、148D、1454.1,4,8,13,16,20,(),5A、20B、25C、27D、285.1,4,27,(),3125A、70B、184C、256D、351 答案1.19881989+19891988的个位数为:A、9B、7C、5D、32.最大的四位数是最大的两位数的多少倍?A、99B、100C、101D、102答案3.大于4/5且小于5/6的数为:A.6/7B.21/30C.49/60D.47/614.今年父亲年龄是儿子年龄的10倍,6年后父亲年龄是儿子年龄的4倍,则今年父亲和儿子的年龄分别是:A.60岁,6岁B.

64、50岁,5岁C.40岁,4岁D.30岁,3岁5.某人用4410元买了一台电脑,其价格是原来定价相继折扣了10%和2%后的价格,则电脑原来定价为:A.4950元B.4990元C.5000元D.5010元6.某时刻钟表时针在10点到11点之间,此时刻再过6分钟后的分针和此时刻3分钟前的时针正好方向相反且在一条直线上,则此时刻为:A.10点15分B.10点19分C.10点20分D.10点25分7.某服装厂生产出来的一批衬衫之中,大号和小号各占一半。其中,25%是白色的,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?A.15B.25C.35D.408.一

65、项工程,甲单独做10天完成,乙单独做需15天完成。问两人合作3天完成了这项工程的几分之几?A.1/2B.1/3C.1/5D.1/69.某学校学生排成一个方阵,最外层的人数是60人,问该方阵共有多少个学生?人人人人10.如右图,一个正方形分成了五个大小相等的长方形。每个长方形的周长都是36米,问这个正方形的周长是多少米?A.56B.60C.64D.681题解析:本题中的两个数字为一组,在这组数字中的前一个数字减去后一个数字等于1,2-1=1,4-3=1,?-5=1,?=5+1=6。故本题的正确答案应为D。2题解析:这是一道难题。如果用加减乘除法均不易找到规律,则可试着用幂来解答。14=1,23=

66、8,32=9,41=4,6-1=1/6,依此规律,()内的数字应为50=1。故本题的正确答案为C。3题解析:此题为前两个数之和减1等于第三个数,22+35-1=56,35+56-1=90,那么,90+?-1=234,?=145。故本题的正确答案为D。4题解析:在此题中,后一个数减去前一个数后分别为4-1=3,8-4=4,13-8=5,16-13=3,20-16=4,这样成了3、4、5、3、4的规律了,那么()之数必然为?-20=5,?=20+5=25。故本题的正确答案为B。5题解析:本题初看较难,但仔细分析后可见,11=1,22=4,33=27,55=3125,那么()内之数必然为44=256

67、。故本题的正确答案为C。返回1题解析:这是道计算个位数的题,是观察尾数法的变式。89的个位数为8;98的个位数为1;8+1=9,故本题的正确答案为A。2题解析:本题需先确定最大的四位数是9999,最大的两位数是99,求倍数就用除法,999999=101。故本题的正确答案为C。3题解析:本题可将两数通分之后得2430与2530,显然B是错误的选项,因为不符合要求。可将2430与2530再扩大一倍,即为4860与5060。故本题的正确答案为C。4题解析:此题可列方程,设今年儿子年龄为x,父亲年龄为10x,10x+6=4(x+6),x=3,父亲年龄为10x=103=30。故本题的正确答案为D。5题解

68、析:本题可简便分为两步,用心算即可。先计算折扣2%前的价格,4410(100%-2%)=4500,再找出折扣10%前的原价格,4500(100%-10%)=5000。故本题的正确答案为C。6题解析:此题可先看时针,时针在10点与11点之间,那么此时分针与时针方向相反且在一条直线上时应在4点到5点之间,分针6分钟之前应在3点,即10点15分。故本题的正确答案为A。7题解析:本题可设小号蓝色衬衫为x件,在100件衬衫中,蓝色为10075%=75(件)。75-x+10=50,x=35。故本题的正确答案为C。8题解析:本题可设总工作量为1,甲一天做110,乙一天做115,两人合作3天做了(110+115)3=163=12。故本题的正确答案为A。9题解析:该学生方阵为正方形,四边加在一起为60人,那每边应为604+1=16人(因为排在竖排第一名者同时也为横排第一名)。所以总人数应为162=256。故本题的正确答案为A。10题解析:设正方形的边长为x,那么,一个小长方形的周长即为2x+25x=36(米),x=15(米),正方形的周长则为154=60(米)。故本题的正确答案为B。返回

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号