Zemax光学与光学设计课件

上传人:汽*** 文档编号:569990891 上传时间:2024-08-01 格式:PPT 页数:132 大小:1.30MB
返回 下载 相关 举报
Zemax光学与光学设计课件_第1页
第1页 / 共132页
Zemax光学与光学设计课件_第2页
第2页 / 共132页
Zemax光学与光学设计课件_第3页
第3页 / 共132页
Zemax光学与光学设计课件_第4页
第4页 / 共132页
Zemax光学与光学设计课件_第5页
第5页 / 共132页
点击查看更多>>
资源描述

《Zemax光学与光学设计课件》由会员分享,可在线阅读,更多相关《Zemax光学与光学设计课件(132页珍藏版)》请在金锄头文库上搜索。

1、光学与光学设计RichardG.BinghamSession 1IntroductionCoordinatesRays that may appear oddImage rotation and parity and an image slicerSpherical Trigonometry advanced option(C)RGBingham2005.Allrightsreserved.ThebeginningSix pages of introductory notes(C)RGBingham2005.Allrightsreserved.AimsRay-tracingsoftwareis

2、amazinglyaccurateandcomprehensive,butpractisingwiththebuttonsonthetoolbarisnotenough.Ouraimsare:tounderstandopticalsystems;tounderstandwhattheprogramisdoing;togainafeelingforwhatproblemsaretractableandwhatopticalcapabilitiesareprovidedbyexistingdesigns;toassesstheperformanceofopticaldesignsconstruct

3、ively;toseehowcomplexopticsmaybecomprisedofsub-systemsexploitinglocalaberrationcorrectionorspecialcases;toexpressourideaswiththeprogram;tohandlethetoolsthatareavailablefordesigningnewsystems;toseewhatfactorsmaystopopticalaberrationsfrombeingmadesmaller;tobeawareofcostandweight;toavoidredundantcomple

4、xityinadesignoritsmanufacturingspecification;andtobepracticalandeconomicasregardstheopticsthatwedesignandtheuseofourtime.Wehopetoachieveallthisbyproperlyunderstandingthedesignersmethods,sothatwecanlearnandkeepuptodateinourownnewdesignsorothersthatwemayevaluate.(C)RGBingham2005.Allrightsreserved.Form

5、atofthistextThismaterial,althoughcreatedinPowerPoint,wasnotintendedfor,andisnotsuitablefor,projectionasslides.PowerPointwasusedtoencapsulatedsuccessiveideasandtopicsinaformatthatultimatelywillbeneatlyseparatescreens.Aslideisreferredtohereasa“page”.Thematerialisarrangedseparate“sessions”ofabout25page

6、seach.Afewsessionsmayincludeoneortwo.docfilesaswell.Asmentionedabove,thematerialcouldbeviewedassuccessivescreensbyanindividualuser,butinitially,itwillbeprinted(quitelarge),againtobereadindividually.Thesuggestedprocedureistofirsttoreadasessionindividuallyandtofollowthatbydiscussingitwithothersinagrou

7、p,orifpossible,toarrangesomekindoftutorialfollowingtheindividualreading.(C)RGBingham2005.Allrightsreserved.HowtohandlethisIthinkthatitisimpossiblefullytopractiseeachtopicbeforemovingon.Perhapsmaterialcanbeskimmedoverifitdoesnotseemhelpful.Orperhapstheconceptsandterminologyfromcomplexareasmaybeacquir

8、edinaneffortlessosmosis,later.Mostequationsaregivenherewithoutderivations;theaimsofthisparticularcoursearesuchthatweneedtopressontotheworkofthedesigner.Thefundamentals,however,maybeusefulforaphysicistorengineertounderstand.TheyarewrittenupbyWelfordin“AberrationsofOpticalSystems”,Hilger1986.Itmaybewo

9、rthconsideringwhethertoworksystematicallythroughthewholebook,asindeedIdidwiththepreviousedition,foracomprehensivefoundation.IrefertothebookasWelfordthroughout.ExamplesaregiveninZemax.Ifboththe.zmxandthe.sesfilesareinthesamefolder,graphicswindowsshouldopenwhentheLensDataEditoropens.Alsoexploreanyofth

10、eotherZemaxfeatures,theirlocalhelpfilesandthemainmanual(.pdf).WithintheZEMAXexamples,thereisawindowcalledTitle/NotesthatappearsonatabaftertheGenbuttonispressed.Asyouviewoneoftheexamples,itisvitaltoreadthosenotesthatarewithintheZemaxdata,asIhaveoftenputcriticalinformationthere.Irecommendthatyoudonotp

11、ersonalisethedefaulttoolbarbuttonsinyourowncopyofZemax.Ifyoudo,youmayfindthatadifferentcomputerisslowertouse,anditwillbecomemarkedlymoredifficulttodemonstratethingstootherusers.(C)RGBingham2005.Allrightsreserved.HowcanIgettopractiseonsomerealdesigns?Ifyouarealreadyworkingwithanyoptics,awaytopractice

12、onrealopticswithoutspendingmoneyistocreatearay-tracingmodelofyourexperimentassoonasthereisevenaminormodificationtoexplore.Soforexample,ifsomeexistinginstrumentneedsmerelytobedifferentlyfocusedortohaveathickercolourfilter,orsomeas-madedatabecomesavailable,usethatasareasontosetupaZEMAXlensdatafile,how

13、eversimple,andthenuse your ZEMAX file to check the modification. OnceyouhaveafewZEMAXmodels,youwillalsobebetterplacedtosolveanyfurtherproblemsarisingwithyourexperiment,andwillbeabletocreaterealisticgraphicsforpublication.However,Iwouldsaythatwhilstsetting up and usingZEMAXyourselfforevensimplepurpos

14、esisveryinstructive,collectingcomplexdatafilesfromotherpeoplewouldbeawasteoftime.(C)RGBingham2005.Allrightsreserved.ZEMAXZEMAXwascreatedbyKenMoorefrom1990todate.ItisforPCsonly.WeshalluseZemaxinthiscourse.Thehardkeyallowsonlyonepersontoaccessitatonce.Itisworththewholevalueofthesoftware.YoucanopenZema

15、xtwiceonthesamemachine(exceptwithRemoteDesktop).ThesecondinstanceofZemaxisusefulforrunninglongcomputationswhilstgettingonwithsomethingelse,orforcuttingandpastingbetweensystems.Youneedindividual,unrestricted,continuousaccesstotheprogram,alongwithtechnicalsupportandupdates,todomuchproductiveworkinopti

16、caldesign,ifthatisyourtask.Sharingasystemisfrustratingandhindersthedesignofreallenses.(C)RGBingham2005.Allrightsreserved.ExamplesettingupaballlensTheexampleisaglassball,asavailablefromMellesGriot.Itisusedasalens(e.g.forfibre-opticswork).ItcanbesetupbyfollowingthedetailsinBall_lens_data.doc.Thisisthe

17、mainexamplewithsuchinstructionsforcreatingitfromabsolutescratch,whichwillprovideausefulexerciseifyouhavenotpreviouslysetuplensesinZEMAX.Inanycase,pleasefindthefurthernotesthatIwrotewithinthat.zmxfile.TheycanbefoundontheGeneral/Title/Notestab(ontheGenbutton).SuchfurthernotesareheldwithinallmyZEMAXexa

18、mplesintheselectures,soitwillbeusefultobeabletofindthem.Tocheckyourresults,theintendeddataisinfile:Ex00-Ball_Lens.zmx.IftheEx00-Ball_Lens.SESfileisalsopresent,itwillbringuprelevantgraphicsasbelow.(C)RGBingham2005.Allrightsreserved.Coordinatesystems13 pages(C)RGBingham2005.Allrightsreserved.+zInZemax

19、,lightmustleavetheobjectsurfaceinthe+z direction.Thethicknessoftheobjectsurfacemustbepositive.x, y, z+y+z+x inwardsRight-handedaxesPositivesagzPositiveradiusofcurvatureSurfaceofalens+yNegativesag,negativeradiusofcurvature(C)RGBingham2005.Allrightsreserved.Lens.Sequentialraytracing1.Thethicknessoraxi

20、althicknessismeasuredpositiveinthe+zdirection2.ThecurvatureofthefrontsurfaceispositivehereExamplefile:Ex01-Lens.ZMX+z+y5.Thisisanopticalsystem4.Lensdrawingsinmostdiagramsarecross-sectionsthatarenotshaded3.Thefrontofalensisthefacethatthelighthitsfirst(C)RGBingham2005.Allrightsreserved.Localcoordinate

21、s.AsurfaceS1hasanorigin(O1here)thatservestolocatethissurfacewithintheopticalsystem.ThefigureofsurfaceS1isdefinedbyitssagz(x,y) thatisthusmeasuredorthogonaltothex,y plane. Eachsurfacealsohasafollowingthickness.Forsequentialraytracing,theoriginO2 ofthenextopticalsurfaceS2ispositionedbythisthicknessofS

22、1alongthez axis.Eachsurfacecanbepositionedinthiswaywithreferencetotheprevioussurface.Definingsurfacesforraytracing+y+z+x isinwardsz(x,y)Some weird lensO1O2S1S2thickness(C)RGBingham2005.Allrightsreserved.ThicknessafteramirrorThethicknessofglassoranairspaceenteredintoZEMAXsLensDataEditorchangessignata

23、mirror.(C)RGBingham2005.Allrightsreserved.Sequentialraytracing-aManginmirrorThisonepieceofglasshastoappearinthedatatwiceforsequentialraytracing.Ithaspositivethicknessbeforethemirrorbutnegativethicknessafterthemirror;inthesecondpass,thethicknessismeasuredintheminuszdirectionfromtheprecedingsurface,th

24、emirror.+y+zExamplefile:Ex02-Mangin.ZMX1234Thethreeraysinthis2Dlayoutaredrawnoptionallyfromaflatsurfacenumbered1thatisinthedatafile.Thissurface1isadummysurfacehere.Adummysurfaceisonethathasthesamerefractiveindexonbothsides.ThesignsofthesecurvaturesareallnegativeGlassA back-surface MirrorThethreerays

25、startedfromanobjectatinfinityatsurfacenumber0.5(C)RGBingham2005.Allrightsreserved.ThemanufacturingspecificationisdifferentrzzGlassremovalmightcorrespondtopositivez intheray-tracingdatabutnegativez onamachine.Lens on machineLens in the ray-tracing dataWronglymadeconvexbecauseapositivesignwasquoted?Ac

26、urvaturewithapositivesignisnotnecessarilyconvexinZemax!Thereisanecessaryintermediatestagewherewesupplyanengineeringdrawingoratleastasketch.Zemaxwilloutputagoodstartingpointforaproperdrawing.LensAsphericlens(C)RGBingham2005.Allrightsreserved.LocalTiltsandDecentresTheprogramprovidesforsurfacesthataret

27、iltedormoved(decentred).Thelocalframeofreferencecanbetiltedormoved,leavingthefunctionz(x,y) unchanged.+z+x isinwardsO2+yForexample,theweirdlenscanhavearight-handsurfacethatistiltedarounditslocalxaxis.Thetiltshownispositivearoundthelocal+xaxis.Combinationsoftwoorthreetiltscanbeused.TheoriginO2canalso

28、belocallyshiftedinx andy, butnotz wehavealreadychosenaz position, basedontheprevioussurface.(C)RGBingham2005.Allrightsreserved.Rotationsthatareconsistentwiththeabove:1.Inthex, yArganddiagramapositiveangleisdrawnanticlockwise,butitisclockwiselookingalonga+zaxisemergingfromthepaper.AsignlikethatoftheA

29、rganddiagramisalsousedfortheangleofarayinsomeopticaldiagrams,andforposition angleonthesky,e.g.fortheplaneofskypolarisationmeasuredanticlockwise(fromnorth).2.Internationalstandardsformachinetoolssuchasmillingmachinesalsousethissign.x, y, z rotationssigns+y+zWerotatetheaxesinwhichsubsequentsurfacesare

30、thendefined,sothesubsequentsurfacesmovewiththerotation.ApositiverotationinZEMAXisclockwiseasviewedinapositiveaxisdirection.Apositiverotationaroundthex axis.TherelevantmatrixexpressionisintheZEMAXmanual.(C)RGBingham2005.Allrightsreserved.x, y, z rotationsthataredifferent1.OPTICA(Mathematica)istheoppo

31、site.Itappliesapositiverotationlookingtowardstheorigin,thatis,inthenegativeaxisdirection.Thedifferencearisesfromrotatinganobjecttheotherwayinglobalaxes.TheglobalaxesinZEMAXcanalsobeunaffected,andoftenoneneednotbeawareofthemanyway.Checkhowtheyaredefined.InZEMAX,withacoordinatebreak,freshlocalaxesareo

32、btainedforfollowingpartsofthesystem.2.IntheCodeVopticaldesigncode(current),arotationaroundeitherthelocalxorthelocalyaxisisnegativeascomparedtotheright-handconventionusedinZEMAX,whilstrotationaroundzisnotaffected.3.IntheGRTopticaldesigncode(obsolescentuniversityFORTRAN),thexrotationisreversedasinCode

33、V.However,theyrotationisnotreversed.ThezrotationappearedtobereversedwhenIrotatedthelinesonadiffractiongrating.4.Othercodesmaybedifferentagain.5.Doubtscanberesolvedbyinspecting3Dgraphicsthattheprogramwilldraw!(C)RGBingham2005.Allrightsreserved.SequentialraytracingaprismTheLensDataEditorcontainsaseque

34、nceofopticalsurfaces.Thepathofanyrayiscalculatedtointerceptthenextopticalsurface,intheorderinwhichtheyarelistedintheLensDataEditor.SeenextslideforanexampleinZEMAX.(C)RGBingham2005.Allrightsreserved.-35+40Coordinatebreaks-aprism1.Theprismanglesaredefinedbycoordinatebreaks.Acoordinatebreakisplacedatad

35、ummyopticalsurface,takinguponelineofdataintheLensDataEditor.Thatlinehasboxesforx&yshiftsandforx, y & ztiltsindegrees.Otherboxesonthesamelineholdthethicknesstothenextsurfaceandaflagforreversingtheorderofthetilts.Axes-252.Thecoordinatebreaksare:2thetiltofthefrontsurface;4thetiltofthezaxisleadingtother

36、equiredcentreoftheexitsurface;5thetiltoftheexitsurface;and7thetiltofthezaxisleadingtotherequiredcentreoftheimagesurface.+60Examplefile:Ex03-Seq_Prism.ZMX3.TheraysrefractpassivelyaccordingtoSnellslaw.Theraysdonotaffectthetiltsoftheaxesinthesedata.RaysThickness 42457(C)RGBingham2005.Allrightsreserved.

37、Coordinatebreaksagain1.Ifweplaceacoordinatebreakimmediatelybeforeanopticalsurface,itissometimesusefultoputinanotheronewiththeoppositesignimmediatelyafterthatsurface,undoingthetiltetc.Thenwecancontinuewiththepreviousaxisdirection.2.Reversingmultipletiltanglesneedsbedoneinthereversesequence.Readtheman

38、ual!(C)RGBingham2005.Allrightsreserved.Tiltsandshiftsagain1.SEQUENTIALRAYTRACINGuseslocalcoordinates:CoordinatebreaksareinsertedintheLens Data Editoraheadofopticalsurfacesthatneedmoving.Thevaluesoftheanglesandshiftscanbevariedinoptimisation.Againforsequentialraytracing,individualopticalsurfacescanbe

39、givenanintrinsictiltorshiftonaSurfacePropertiestab.Theeffectisthesameaswithwithcoordinatebreaksbutthedataarenotcurrentlyoptimisable.2.ForNON-SEQUENTIALRAYTRACING,awholeobjectcanhaveitsowntiltandpositionsetupinalineofdataforthatobjectwithintheNon-Sequential Components Editor.Thisisessentiallyaglobalr

40、eferencesystem,althoughalternatively,onecomponentcanbereferredtoanother.(C)RGBingham2005.Allrightsreserved.RaysthatmayappearoddTwo pages about geometrical rays in a ray-tracing program(C)RGBingham2005.Allrightsreserved.Ageometricalrayisalinetothenextsurface,butAEFADBAAisanormalraypathInsequentialray

41、tracing,rayBisavalidextrapolationtoavirtualimageinanegativespace.Ithastoendtheraytraceortobereversed.But in a sequential ray trace, rays can fail or“crash”:RayCmissesadefinedsurfaceapertureRayD,ifreflectedbyTIR,terminatesunlessthesurfaceisdefinedasamirrorRayEmissesthespherealtogetherRayFmayintersect

42、thesphereatthewrongpoint.CLens(C)RGBingham2005.Allrightsreserved.Non-sequentialraytracingaprismExample:Ex04-NSC_Prism.ZMXThisRectangularVolumeobjectisdefinedonasinglelineoftheNon-SequentialComponentsEditor.Thefacesofthisobjectwouldformacuboidbydefault,buttheycanbeangledastheyarehere,andthewholething

43、istilted30aroundx.Raysshownhereintercept0,2or3surfaces.TherearemanytypesofNSCobjects.Theycanbepositionedwithrespecttoasingleorigin,orindividuallywithrespecttootherdefinedobjects.NSCrayscansplit,scatter,etc.,butdontcrash.Twosortsofraysappearthatgothroughthisprismbutarenotdispersedinangle.(C)RGBingham

44、2005.Allrightsreserved.ImageRotationandParityandanimageslicerTen Pages(C)RGBingham2005.Allrightsreserved.Invertingtheimagemeansrotatingit180degreesaroundtheaxis.NoticethatZEMAXviewstheimageinthe+zdirection.Ifthereisanintermediaterealimage,thefinalimageiserect.Thesameappliestomirrorsastolenses.ThusaC

45、assegraintelescopegivesaninvertedimagebutaGregoriantelescope,whichhasoneintermediateimage,givesanerectfinalimage.InvertedrealimageinanaxiallysymmetricalsystemFFz(C)RGBingham2005.Allrightsreserved.ImageParityReversalofparityisathree-dimensionaleffect.Ifthetotalnumberofmirrorsisodd,theimageparityisrev

46、ersed.Withanoddnumberofmirrorsinanaxiallysymmetricalsystem,thethree-dimensionalimagemustbereversedindepth,becauseneitherlateraldirectionisspecial.Thusina3-mirrorcamera,iftheobjectmovesoneway,theimagemovesintheoppositedirectiontotheobject,justasinasingleplanemirror.Usingtheseideas,inaCassegraintelesc

47、ope,whichwaydoesthefocusmovebetweeninfinityandalaserguidestar?(C)RGBingham2005.Allrightsreserved.ImagerotatorsFieldofviewWehaveafewobjectsaroundafieldofviewthatisfixedinspace.Image1TheimagerotatorflipstheirimagesacrossadiameterA.Thatiswhatitdoes.AImage2Theniftheflippingdiameterrotatesbyanangletoline

48、B,thefieldofviewrotatesby2ascomparedwithImage1.AB(C)RGBingham2005.Allrightsreserved.Three-mirrorimagerotator(K-mirror)+Directionsofthezaxisandthesignsofthethicknesses.Theunusual,reversedfinalthicknessaffectsthesignofthefinalzrotationinthedatafile.Ex08-Rotator.ZMXAnimatewithTools,Slider(C)RGBingham20

49、05.Allrightsreserved.TwootherdeviceswithflatmirrorsThreepages(C)RGBingham2005.Allrightsreserved.DihedralmirrorsEx06-Dihedral.ZMXThedirectionoftheemergentraysisunchangedwhentiltingapairofplanemirrorstogether.Furthermore,ifthetiltisaroundthelineofintersectionofthemirrors,thedirections,positionsandtota

50、lpathlengthsoftheemergentraysareallunchanged.Soforexample,mountingapairofflatmirrorsonthesamebasecanprovidestability.TheexampleusesbothcoordinatebreaksandatiltonaSurfacePropertiestab.(C)RGBingham2005.Allrightsreserved.Imageslicer/assemblerSideviewViewintoemergingbeamEnlargedViewintobeamTheslitformed

51、ThismodifiedWalraven-typeimageslicercutsapatchoflightinto5slicestofittheslitofaspectrometer.Ex07-5-Slicer.ZMXTwomirrorssimulatingTIR(C)RGBingham2005.Allrightsreserved.Imageslicers(illustration)Silicabaseplate55mmdiameterThebHROS5-slicers.(C)RGBingham2005.Allrightsreserved.SphericalTrigonometry-Advan

52、cedoptionNote.Ijoinedaprojectthathadbeenrunningsixmonths,onlytofindthatnoonehadbeenusingthecorrect3DgeometryinZEMAX.Asaresult,nothingwasquiterightandnocorrect3Dlayoutscouldbedrawn.SphericalTrigonometrymayseemaforbiddingsubjectareatostepinto,butpersonally,Idontexpecttosolvetheseproblemsinanhouroramor

53、ning.EvenifittakesafewdaystopuzzleouttheSphericalTrigonometry,itmaybewellworththeeffort.Tenpages.(C)RGBingham2005.Allrightsreserved.GreatandsmallcirclesandsphericaltrianglesSeveralgreatcirclesOnesmallcircleSphericalTriangles.Theiranglesaddtomorethan180degrees.Thesidesofthetrianglesaregreatcircles.Th

54、eyarealsoangles.Noticethesphericaltrianglesinwhichatleastoneoftheanglesisarightangle.ThesetrianglesareoftenneededandcanbesolvedbyNapiers rules.(C)RGBingham2005.Allrightsreserved.Sketchingforcalculationsin3DNorth PoleSouth PoleStereographicprojectionontotheequatorialplanefromtheSouthPole.PP as projec

55、tedMappingasphereontoaplaneSideviewthroughasphere,showingaplaneanditspolePNorth Pole90-9090-(C)RGBingham2005.Allrightsreserved.GoodNewsabouttheStereographicProjection1.Weneverneedtocalculatetheactualprojection.Itservesasawayofsketchingdiagramsof3Dobjects.2.Anglesmeasuredlocallyonthesurfaceofthespher

56、earethesameangleintheprojection.3.Acircledrawnonthesphereappearsasacircleintheprojection.(C)RGBingham2005.Allrightsreserved.Napiersrulesforaright-angledtriangle(C=90)(C)90-c90-B90-A baC=90bAcBaArrangethesymbolsinfive“parts”asshownontheright.Thensin(middlepart)=prodtanadjacentparts=prodcosoppositepar

57、tse.g.sin(90-c)=cosacosb=tan(90-A)tan(90-B)Thisistheonethatweshallusefortheexample(C)RGBingham2005.Allrightsreserved.Napiersrulesforaquadrantaltriangle(c=90)CbAc=90Ba(c)C-9090-b90-aBAsin(middlepart)=prodtanadjacentparts=prodcosoppositeparts(C)RGBingham2005.Allrightsreserved.Otherusefulformulaeforari

58、ght-angledsphericaltriangle:sina/sinA=sinb/sinB=sinc/sinCcosa =cosb cosc +sinbsinccosAcosA =cosBcosC +sinBsinCcosaThereareothersbutIhaveneverneededthemforoptics.(C)RGBingham2005.Allrightsreserved.3Dexample-PositioningaRetroreflectorUse NSC object Triangular Corner but we want the hollow side to face

59、 the light.(C)RGBingham2005.Allrightsreserved.z 3Dexample-PositioningaRetroreflectorYXZTurning the Triangular Corner so that the hollow side faces the light. The poles of all the surfaces need to be equidistant from Z.1. Plot the poles of the three starting surfaces at the black dots x, y and z. 2.

60、First, rotate the device through a negative angle around X. The Y pole goes to Y. Z goes to z. Draw the equator of Y through z.Y 3. Second, rotate the device 135 degrees around Y. The -z pole shifts to Z. The -X pole shifts to X. Z X4. The poles of the surfaces are now X, Y and Z. They can be all at

61、 an angle 90- from the original Z axis.(90- )5. Now solve for in the triangle X Z z.(90- )45(C)RGBingham2005.Allrightsreserved.Solvingtheright-angledtrianglez ZX90-45a ( )c(90- )b (45)CABOneofNapiers rulesforaright-angledtrianglesays:cos c = cos a cosb (ifC =90)Sointhiscase:sin = cos cos45 , therefo

62、re:tan = 1/2 = 35.2644degrees90- = 54.7356degreesRe-drawit:(C)RGBingham2005.Allrightsreserved.ResultofpositioningtheretroreflectorusingtheTriangularCornerEx05-RR1.ZMXThis example is developed for the advanced topic on Spherical Trigonometry.(C)RGBingham2005.Allrightsreserved.OpticsandOpticalDesignSe

63、ssion2Session 2 Spheres AspheresAberrationsDefocusSpherical aberration Coma ExamplesRichardG.Bingham(C)RGBingham2005.Allrightsreserved.11pagesonspheresandaspheres(C)RGBingham2005.Allrightsreserved.EquationofasphereasusedforraytracingZzcisthecurvature.Itisthereciprocaloftheradiusofcurvature.Thisrecip

64、rocalisconvenientinexpressionsthatavoidnumericalproblemsataflatopticalsurfaceorwhenraysarenormaltoasurface.z(x,y)YThespherepassingthroughtheoriginhastobeexpressedasz = f(r,c) wherer2=x2+y2r1/c(C)RGBingham2005.Allrightsreserved.1+(1c2r2)Equationofasphere(2)Zzrc r2z (r) =1/cThisexactequationisthatused

65、forraytracing.Ithasasimpleextensionforconicsections.Itisoftenalsousefulforcalculatingthetotaldepthofthesurfaceofasphericallensormirror.(C)RGBingham2005.Allrightsreserved.Equationofasphere(3):Taylorseriesz (r)=cr2/2+c3r4/8+c5r6/16zrTheosculatingparabolaDifferenceofthesphereandtheparabolatoorderr4.Inc

66、identally,thisleadstotheSchmidtcorrectorplate.Differenceofthesphereandtheparabolatoorderr6.ThisisnotusefulfortheSchmidtplate.Parabola-paraboloidofrevolution(C)RGBingham2005.Allrightsreserved.ConicsectionsAreflectingtelescopewithaparabolicmirrorEx11-Paraboloid.zmxTherefractingsurfacediscoveredbyDesca

67、rtesin1637Ex12-Ellipsoid_lens.zmxAsphericsurfacesareantiquebutwestillstruggletomakethem!(C)RGBingham2005.Allrightsreserved.TheStandardsurfaceandtheconicconstant1+(1(1+k)c2r2)c r2z (r) =zrConicConstantkShapeofthesurfaceEccentricitye ofaplanecurve0oblateellipsoid(Arotatedellipse)0sphere0-1k0prolateell

68、ipsoid0e 1-1paraboloid11eisusefulforfindingtheconjugatesEx10-Conics.zmx(C)RGBingham2005.Allrightsreserved.Osculatingsphereandparaboloidz (sphere)= z (paraboloid)=cr2/2rThedifferencebetweenthesphereandtheparaboloidisr4.Thereisnodifferenceterminr2.Nearthecentre,thedifferencebetweensphereandparaboloidt

69、endstozero.cr 2/2isusefulforaquickestimateofthedepthofacurveevenasphere.zcr2/2+c3r4/81/c(C)RGBingham2005.Allrightsreserved.AsphereandalltheosculatingconicoidssphereAlltheprolateellipsoids(rugbyballs)paraboloidAllthehyperboloidsTheseconicoidsofrevolutionfitthespherenearthecentre.Theyhavethesamevertex

70、curvature.Thedifferencesareallr4toafirstapproximation.Thereisnodifferencer2.Mirrorofalargetelescope?Alltheoblateellipsoids(Smarties)rz(C)RGBingham2005.Allrightsreserved.ConjugatefociofellipseandhyperbolaaaEccentricity e=(-k)=(-8 a4/c3)VFFVFFForanellipse:a=1/c (1-e2)VF=a (1-e)VF=a (1+e)Foranhyperbola

71、:a=1/c (e2-1)VF=a (1-e)VF=-a (1+e)VisthevertexForsettinguparequiredcurveorfordesigninganopticaltest(C)RGBingham2005.Allrightsreserved.+a2r2+a4r4+a6r6+a8r81+(1(1+k)c2r2)c r2z (r) =TheEvenAspheresurface(1)zra2hasdimensionsL-1,a4hasdimensionsL-3etc.Affectsscaling.Odd-powertermsarenotnecessaryinasymetri

72、calopticalsurfaceexpressedwithsuchapolynomial,becausetheyandtheirdifferentialswouldnotbesymmetricalorwouldhaveacuspattheoriginifwrittenwithyand-y.Thesameappliesbothtoanopticalsurfaceandtoaxialaberrationsinasymmetricallens,soalthoughwemightdescribeanopticalsurfacewithoddterms,thosetermsarenotoftenhel

73、pful.(C)RGBingham2005.Allrightsreserved.1.Vertex curvature. a20impliesavertexcurvature2a2evenifc=0.Ihaveneverusednon-zeroa2withnon-zeroc(althoughpeopledo).2.Exact paraboloids. Eitherk = 1withc0,ora20.Tousebothwouldberedundantatbest.kismorevisiblethana2inthedata.3.Conic sections.Eitherexactlywithk0,o

74、rasfarasther4termusinga4.z(conic)z(sphere)=,sothereisanapproximationthata4=.TheEvenAsphere(2)+a2r2+a4r4+a6r61+(1(1+k)c2r2)c r2z (r) =8c3kr 4+Therearetwowaysofprescribing:8c3kWhy use that? Is c the same?(C)RGBingham2005.Allrightsreserved.Isitbettertousepolynomialsorconicsections?Theconicsectionisspec

75、ialforitsgeometricalfoci.Ifthereisnoreasontoconsiderthegeometricalfoci,theformsavailablewiththeconicsectionmaybetoolimited.Theconicsectioncannotdescribeasurfacelikethis:Intheconicsection,theasphericitydependsonthevertexcurvature.Awkwardwhenflat!Theconicsectionisexcellentforopticaltesting.(C)RGBingha

76、m2005.Allrightsreserved.Sixslidesonwavefrontaberrationanddefocus(C)RGBingham2005.Allrightsreserved.WavefrontaberrationOPDplotwhatitisTheOPDmapsandsectionsarewellexplainedintheZEMAXmanual.CalculatingOPDinvolvesray-tracingthatisintheprogrambutwhichisprobablyunknowntotheuser,suchastracingbacktotheexitp

77、upil(seeWelford).Anothergeneralmethodisgiveninoneofthepagesondefocusinthiscourse.(Idonotknowwhythatmethodislessused.)Thereisawarninginsession4regardingusingthetwoOPDcross-sectionsinasymetricalsystems.PositiveOPDisadvanced.(C)RGBingham2005.Allrightsreserved.WavefrontWavefrontaberration-movingthefocus

78、z Wz axisuSupposewemovetheCCDtotherightbyz.ThatintroducesaphaseerrorW intheconvergingsphericalwavefront.Wisawavefrontaberration.Itisadistance.Itispositiveherebecausethephaseisnowtooadvanced.HowbigisW,andwhatshapeisitinxandy?Itisthedifferencebetweentwospheres.CCDThefocus(C)RGBingham2005.Allrightsrese

79、rved. zuCCDWduetodefocusonlyThefocusTheaberrationistakenaszeroforthechiefray.Thepathlengthsoftheraysareallequaltoeachotherasfarasthefocus.Thentheaxialraytravelsafurtherdistancez,butthewavefrontcorrespondingtotheperipheralraytravelsonlyz cos u z (1 u2/2).Sothesectionofthewavefrontcorrespondingtothepe

80、ripheralrayarrivesearlier:itsphaseisadvancedbyz u2/2. W=z u2/2orz =2W/u2Whenthesignalisdetected,thewavefrontshavearrivedhere.Huygenswavelets(Usefultoknow)(C)RGBingham2005.Allrightsreserved.(cosineterm)Theshapeofthedefocusedwavefront(c2 c1)r2/2z (r)=cr2/2+ Wrzc1c2Thecosinetermaffectsonlyr4andabove. W

81、Thewavefrontaberrationthatcorrespondstoashiftoffocusshifttakestheformofaparabolalocally,because:SeeEx09-Defoc_Lens.zmxEquationofasphereseelater(C)RGBingham2005.Allrightsreserved.Theshapeofthedefocusedwavefront,andtheaberrationfansOut-of-focusimage(C)RGBingham2005.Allrightsreserved.Exercise.Depthoffo

82、cuswithrays.Effectwithlongfocallength,e.g,withatelephotolens.Thisessentiallyusesaperfectcamerathatisnotfocusedtoinfinity.UseNewtonsConjugateDistanceEquation(seeWelford).Assumealenshasfocallengthf, F-numberN(f/diameter)andsetalimitptotheimagediameter.Approximatingtan=,findthedepthoffocus(linearrangeo

83、facceptableimagediameter)ataseriesofobjectdistancesandnotice its dependence onf.Nowdefineawavelengthasifpistwicethediffraction-limiteddiameter.SeewhetherW/ isneartheRayleighdiffractionlimit for the imagediameterp.(C)RGBingham2005.Allrightsreserved.Fourslidesonsphericalaberrationandcoma.(C)RGBingham2

84、005.Allrightsreserved.BalancingsphericalaberrationagainstfocusThesetwoaberrationsarenotdescribedbyorthogonalbasisfunctions.Fortunately.SphericalaberrationDefocusBalancedMany forms of aberration can and must be balanced against others. A difference from the paraxial focus is commonplace.(C)RGBingham2

85、005.Allrightsreserved.Aberrationsare:thedepartures(a)ofwavefrontsfromspherescentredonsomerequiredimagepoint,and(b)ofraysfromcrossingthefocalsurfaceattherequiredpoint.Aberrationsatasingleopticalsurfacecanhaveeithersign.Wetrytocancelthemoutamongstthedifferentsurfacesinafinisheddesign.DefocusdonethatSp

86、hericalaberrationEx13-Sphere.zmx(dropthecentralobscurations)ComaEx11-Paraboloid.zmx(C)RGBingham2005.Allrightsreserved.SphericalaberrationComa W 4 0 W y 3 1OPD=Wavefrontaberrationory=relativeradiusinaperture=distancefromtheaxialfieldpointCross-sectionsofwavefrontInthisgroupofslides,anyminussignsareta

87、kenupintheconstantofproportionalityOnaxisHalfwayoutEdgeofthefieldofviewyx(C)RGBingham2005.Allrightsreserved.Sphericalaberrationandcomawavefronts W 4 0 W 3 1cosWavefrontaberration=relativeradiusinaperture=distancefromcentreoffieldEdgeoffieldMeantiltremovedMoreonaberrationplotsinsession4.(C)RGBingham2

88、005.Allrightsreserved.Eightslidesofexamples(C)RGBingham2005.Allrightsreserved.ACassegraintelescopeThe4.2-metreWHT(WilliamHerschelTelescope)Ex14-WHTelescope.zmxOPD+/-10wavesTransverserays+/-500microns(C)RGBingham2005.Allrightsreserved.ARitchey-ChrtientelescopeThe3.9-metreAAT(Anglo-AustralianTelescope

89、)Ex15-AATelescope.zmxOPD+/-10wavesTransverserays+/-500microns(Accordingtotheorythemirrorsarenotanalyticallyparaboloids.)(C)RGBingham2005.Allrightsreserved.Atelescopeas-madeWiththeas-madedimensionsofthemirrors,thefocusisstillformedatthespecified2500mmbehindthevertexoftheprimarymirror.Refocusingbymovi

90、ngM2wouldhaveintroducedsphericalaberration.Mosttelescopeshaveanoticeableerrorhere(butnotthistelescope).IntheproductionoftheWHT,thespecificationofM2wasre-computedaftertheprimarymirrorwasfinishedtokeepthepositionoftheCassegrainfocuscorrect(zerosphericalaberration).Theas-madef-numberis10.95,not11.Theas

91、-madeaperturediameteris4180mm,not4200.Do these last two points matter?Example:the4.2-metreWHT(WilliamHerschelTelescope)Ex14-WHTelescope.zmx(C)RGBingham2005.Allrightsreserved.Off-axisparaboloid(cameraorcollimator)Intheray-tracingdata,wepositionthevertexofthemirrorratherthanthepointwheretheaxialrayhit

92、sit.Also,thenormalfocallengthofthemirrorwilldifferfromtherequiredfocallengthoftheoff-axissystem.This is typical of many geometrical problems in optics. Tosetuptheraytrace,wecaneither:(1)Dothealgebra,or(2)Setupanapproximation,computevariousdimensionswithintheprogram,thenrefinethemtoarbitrarilyhighpre

93、cisionastargetedvariablesinnumericaloptimisation(laterlecture).Foranexactparabola,thealgebramayseempreferable.Therearestillafewstepstosetupintheray-tracingdata.See:OFF_AX_P.docEx16-Trivial_parab.zmxEx17-bHROS_parab.zmxandinthenextslide,adescriptionformanufacturing.(C)RGBingham2005.Allrightsreserved.

94、Off-axisparaboloidanactualspecification(C)RGBingham2005.Allrightsreserved.AGoodPairofOff-AxisParaboloidsEx18-Good_parabs.zmx“OSCA”323mm(C)RGBingham2005.Allrightsreserved.ABadPairofOff-AxisParaboloidsArelativelymassiveaberration,butwhyarewestillcallingitcoma?Doesitmatter?Ex19-Bad_parabs.zmx(C)RGBingh

95、am2005.Allrightsreserved.WhythegoodparaboloidsworkEnd-to-endsymmetryofanopticalsystemresultsinzeroaberrationforthosetermsthatriseasanoddpowerofthefieldangle.Suchtermsarecoma( 1)anddistortion( 3).(C)RGBingham2005.Allrightsreserved.OpticsandOpticalDesignSession3R.G.BinghamSession 3Paraxial ray tracing

96、 and related issuesA theoretical finite ray, three selected systems and tips on “pasting in” (C)RGBingham2005.Allrightsreserved.Stagesindoingthejob WhWavefrontPropagationdirectionW = a2.h2 + a4.h4 + a6.h6 + a8.h8 + ?Thereisnouniversaltheorythatleadstodesignsforthecompoundlensesandotheropticalsystems

97、withthelowestaberrations.Thereisnotheorythattellsuswheretostart.Thereareusuallymultiplefeasiblesolutions,andwemayhave,say,twoorthreeworkingdaystomakesomeprogress.Wecannotavoidthinking.Weneedknowledgeablytopieceopticstogethertogivetherequiredfunctions,tobeawareofdifferentpossiblesolutions,andtoworkto

98、refinethesebasicideas.Amongstmanyconceivablenumericalapproaches,twolevelsofapproximationenableus(a)tosetupschematicinitialconceptsthatcanberay-tracedbeforecorrectingaberrations,and(b)possiblytoelaborateontheseideasandinanycasetocheckthattheoptimiser(thecomputingalgorithmthatcanreducetherealaberratio

99、ns)isworkingcorrectly.Atypicalwavefrontprofileinalensshowsaberrations;itwillnotconvergetoapoint.Itsproblemsareconceptuallycomplex,eveninalensthatisaxiallysymmetrical.(C)RGBingham2005.Allrightsreserved.Paraxialraytracingandrelatedissues17pages(C)RGBingham2005.Allrightsreserved.UsesoftheParaxialandSei

100、delapproximations WhWavefrontLensaxisandpropagationdirectionParaxialformulaeassume:W = a2 h2.Mainlyforstartingadesign. Derive lens curves and diameters from the image position, focal length, f-number or magnification. Check feasibility. Like a “thin lens” calculation, but it applies to thick lenses

101、and complex systems. Much can be done using the solves in ZEMAX or with a pocket calculator.Seidelapproximation:W = a2 h2 + a4 h4 (and related terms off-axis). Exploit the Seidel aberrations by inspection. Solve some problems. In a later session, we shall discuss how to use the residual Seidel aberr

102、ations to review an optical design that is nominally finished, in particular to see whether the optimiser was well set up for it.W = a2 h2 + a4 h4 + a6 h6 + a8 h8 + ?(C)RGBingham2005.Allrightsreserved.UseZEMAXssolves,orcalculatebyhand?ZEMAXprovidesmanyconvenientsolveswithinitsLensDataEditorforderivi

103、ngcurvaturesandthicknesses.Iguessthattheysupersedetheformulaeformostusers.Idocalculateoccasionalresultsbyhandfromequationsdiscussedinthissession:paraxialray-tracing;Lagrangesinvariant(thatupholdsthesecondlawofthermodynamics);andfromNewtonsconjugatedistanceequation.Idothiswithapocketcalculatorandinro

104、ughnotes.Iusetheseexpressionstoputdimensionsontoasketchofsomeparticularidea,tocheckfeasibility,ortentativelytocalculatelengthsoranglesinthecourseofadiscussion.Seethedetailedexample(laterslide).Thatsetsupapreliminarylensdesignwithpencilandpaperanditcopeswithsomegreyareas.Alternatives.(a)Similarideasm

105、ightbeentereddirectlyintoZEMAXusingthesolvesorbytrialanderror,or(b)wemightstartwithsomeexistinglensdesignthatcanbescaled,modifiedandre-optimisedforanewapplicationwithinZEMAX.(C)RGBingham2005.Allrightsreserved.Example:ZEMAXsLensDataEditor:pickupsintheballlensFromEx00-Ball_Lens.zmxtoEx20-Ball_Lens.zmx

106、PickupsareatypeofSolve.Pickupscalculateentriesinthelensdatafromotherdimensionsorfromtherays.Dimensionsbecomelinked.Thiscanbuildindimensionalsymmetries,etc.,canholdthemevenwhenthedimensionsarevaried,eitherinoptimisationormanually.Thenfewernumbersaretreatedasvariable,andtherequiredlensstructurefollows

107、them.Pickupsareillustratedhereforaballlens.Theyforcetheentranceandexitareasoftheballtohaveequalbutoppositecurvaturesandtolieattheseparationrequiredforasphere.Thegivenexamplealsousesasolvetopositionthefinalfocus.Onlyonedimensionnowneedstobevariedwhenchangingthediameterofthesphere.WORDfileBall_Lens_Pi

108、ckups.docliststheSolvesthatprovidetheseeffectsinEx00-Ball_Lens.zmx,leadingtoEx20-Ball_Lens.zmx.Trychangingtheballdiameterto,say,6mmbychangingtheradiusto3mminsteadof2.5onsurface2.Thenupdatethelayoutandaberrationplot.AlsoseeZEMAXsautomaticfocallengthresult,etc.(C)RGBingham2005.Allrightsreserved.Paraxi

109、alray-tracingformulaeandwhatwemightdowiththemThesurfaceofathicklens,orathinlenswithpowerK (see next slide)uuhnndh1ThenextopticalsurfaceThe ray traced is usually the marginal, or edge, ray of the axial ray pencil. It is a ray arising from the axial field point. It passes through the edge of the apert

110、ure stop.Anglesuanduaretreatedassmallanglesbetweentherayandtheopticalaxis.Asdiscussed,uisnegative.Therefractiveindicesbeforeandafterrefractionarenandn.(1)Ray-tracing.TherayshownintersectsasurfaceofpowerKataheighthandthefollowingsurfaceatdistancedatheighth1. ThenfollowingWelford,nu - nu = - hK (1)h1

111、= h + du (2) Equation1givestheangleuoftheray,followingthesurface.Equation2transferstheraytointersectthenextopticalsurface.Anynumberofsurfacescanberay-traced.(2)Seidelaberrationscouldbecalculatedfromtheseresultsoftheparaxialray-trace.(3)Moreinterestingly,startingfromrequiredrayheightsandangles,wecanw

112、orkbackwardstofindKforeachopticalsurface.Thismaywellbehelpfulasastartingpointfordesigningthelens.SowhatdoesKtellus?Seenextslide.(C)RGBingham2005.Allrightsreserved.WaysofusingthepowerK asfoundfromtheparaxialformulae1.Forathinlensoffocallengthf :f = 1/K. Theuseofthisformulawouldbetoselectafewthinlense

113、sfromacatalogueorfromaspectacletrialcase(maybeallowingforimmersion)tosetupacrudeopticalsystemmatchingtheray-trace.2.Forathinlensbetweendifferentmedia(lessusual):f = n /K (seeWelford).3.Forasingleopticalsurfacewithradiusofcurvaturer : r= (n n)/K. Weusefullyfindrforasinglesurfaceasapreliminarytoray-tr

114、acing,dependingasitdoesonthedifference(n n) ofrefractiveindexacrossalenssurface.Note:Intheseparaxialformulae,refractiveindexandthicknesschangesignafteramirror,so(n n) = 2atamirror.4.Forathinlensaddingopticalpath atheighth : = h2K /2. Thisappliesbothtoordinarylensesandtothingradient-indexlenses. isth

115、edistancebywhichtheopticalpathmustbeadvanced atheighthinordertogivetherequiredlenspowerK. h isoftentheradiusofthelensaperture.Note:alensofpositivepoweradvancesphaseatitsedgerelativetoitscentre.(C)RGBingham2005.Allrightsreserved.NoteonparaxialraysParaxialrayscanbetracedevenwhentherealrayswillcrash.Ra

116、yscrashduetooneoftheeffectsdiscussedinaprevioussession,suchastotalinternalreflectioninalens.Thiscanbemisleading,soitisbesttouseparaxialray-tracingwithinrealisticcontextsandinconjunctionwitharealisticsketch.Crashingrayscanalsobeavoidedbydoingthefirstrealray-tracewithareducedapertureorfieldsize,orperh

117、apsacurvaturecanbechanged.Therequireddimensionscansometimesberestoredinstages.Aparaxialray-tracecanalsobeusedtotracechiefrays,whenlookingatquestionsofpupilimaging.Apupilexistswheretheheightofthechiefrayiszero.(C)RGBingham2005.Allrightsreserved.Example:fillinginlensdimensionsonasketchRayanglesu1u2u3u

118、4u5=0Rayheightsh1=0h2h3h4h5Thicknessesd1d2d3d4TryflatsurfacesK1,c1K2,c2Roughsketchoftelephoto collimator,f/6input,50mmbeamoutputWestartfromthisroughsketch.Fortherationaleofthesketchandhandlingit,seeParax_example.docandEx21-Parax_example.zmx.Mostofthesymbolsareinitiallyunknowns,butwecanassignvaluesto

119、thembyhandcalculation.Lenselements(C)RGBingham2005.Allrightsreserved.TheDefinitionofFocalLengthFocallengthisdefinedasf=-h/u,whereuistheimage-sideparaxialrayangleoftheaxialraypencilwhentheobjectisatinfinity.Itdiffersfrombackfocaldistance=b.f.d.Noteminussign.Ifthecollimatedinputbeamisdeviatedtoafielda

120、ngle,theimagepointmovesbyadistanceandf= / .Thisparaxialfocometerconceptforfisequivalenttotheabovedefinition.SeeWelford.Forrealrays,aberrationsmatter.ForrealaxialraysatanangleU,f=-h/sin U iftheimagehasnocoma.WemightusethattoestimateU given h and f. Conversely,iffdoesequal-h/sin U ,thecomaiszero!Thati

121、sknownastheAbbe sine condition forzerocoma.Focallengthisausefulconceptwhenthelens,etc.,canbefocusedtoinfinity.Adaptingthefirstexamplefromlecture1:hu or U(C)RGBingham2005.Allrightsreserved.ParabasalRays.WhyisFocalLengthwelldefinedbyaparaxialformula?Aswehavediscussed,paraxialraysareapproximate.Forreal

122、raysthathappentolieclosetotheopticalaxisofalens,theexpression“parabasal”raysisused.Paraxialraystendtoexactcoincidencewiththeserealparabasalraysashtendstozero.Thatiswhyfocallengthiswelldefinedbyaparaxialformula.Zemax,possiblyunlikemostothersoftware,tendstouseparabasalraysratherthanparaxialrays.Paraba

123、salrayheights,oncescaleduptothelensaperture,arethesameasparaxialrays.ThusZemaxusesnumericalmethodsapplicabletoanyrayeventocomputequantitiessuchasfocallength,whichisdefinedparaxially.Itdoesthisratherthanusingparaxialformulaeinordertobroadentheapplicabilityoftheprogramsalgorithmsanduserfeatures.Its“pa

124、raxial”methodswouldalsobeapplicabletosomefurthercases,suchastounusualopticalprofilesforopticalsurfaces.(C)RGBingham2005.Allrightsreserved.LagrangesInvariantTheLagrangeinvariantHiscalculatedfromtherays.Thusitinvolvestheobjectorimageheightor,rayheightshinthelens,rayanglesandu andrefractiveindices.Forr

125、aysthatpassthroughthelens,Hhasacertainvalue,whethertheobjectandimagearerealorvirtual.ThevalueofHisthesameineachsuccessivespacefromobjecttoimage,whetherinairorglass.Theinvariancecannotbedefeatedinanysystem.Henablesaspecificationforalenstobecheckedforconsequencessuchasemergentrayanglesandindeedforphys

126、icalfeasibility.The value of H. nandn aretherefractiveindicesintwoexamplespaces.Inanyspacewheretheraypenciliscollimatedinagivenopticalsystem,thevalueof-n h isthesame.Inanyspacewheretheraypencilisnotcollimated,thevalueofn u isthesame.H =-n h = n u hunnThink of some examples?(C)RGBingham2005.Allrights

127、reserved.Example:LenticularBeamExpanderEx22-Lens_Expander.zmxAcollimatedbeamof5mmdiameterisexpandedto8mm.ThisangularspreadfallsandsotheexampleillustratesLagrangesInvariant.SeethenotesandreferencewithintheZEMAXfile.Thepupilpositionisnotshiftedbyinsertingthisparticularlens.ItsdesignaroseinastudyofShac

128、k-Hartmannwavefrontsensors.RealentrancepupilandvirtualexitpupilZEMAXsparaxiallenstotestcollimation(C)RGBingham2005.Allrightsreserved.Example:MirrorBeamReducerconfocalparaboloidsEx23-Mirror_Reducer.zmxusesconfocalconcaveparaboloidson-axistodeliveracollimatedbeamofreduceddiameter,withzerocoma.Alternat

129、ively,off-axispartsofsuchparaboloidscanbemade,andcanbecombinedasanunobstructedHerschelliantelescope.CommonfocusofbothmirrorsPrimarymirrorSecondarymirrorZEMAXsparaxiallenstotestcollimation(C)RGBingham2005.Allrightsreserved.PrismBeamExpander/TelescopeEx24-Prism_Expander.zmxAbeamcanbeexpandedwiththeuse

130、offlatsurfacesonly.SeenoteswithintheZEMAXfile.(C)RGBingham2005.Allrightsreserved.PrincipalplanesP,PandprincipalfociF,FFocallengthfPAnopticalsystemFFocallengthFPThesameopticalsystemWelfordsnotationParaxialfocus(C)RGBingham2005.Allrightsreserved.NewtonsconjugatedistanceequationandthemagnificationsOOFF

131、z (negative in this diagram)zTheboxrepresentsanyopticalsystemoffocallengthf.Therefractiveindexistakenasthesameeachside(seeWelfordformoregenerality).OisatanimageofOandvice versa ;thusOandOareconjugatesorconjugatefocalpositionsorconjugatepoints.OandOandtheprincipalfociFandFaresometimesimmersedwithinan

132、opticalsystem.Newtonsconjugatedistanceequationstatesthatz z = - f 2. Also,thelateralmagnificationmisgivenbym=-f/z =z/f. Longitudinalmagnificationism2. Thesignsofthemagnificationsrelatetoimageinversionandimageparity,asdiscussedinanotherlecture.f(C)RGBingham2005.Allrightsreserved.SpreadsheetsIwouldsay

133、thatanEXCELspreadsheetforparaxialcalculationshasbeenrenderedunnecessarybysoftwaresuchasZEMAX.Thespreadsheetwouldneedtobeintuitivetolearn,andtoworkeitherforwardsorbackwardsbetweenthesurfacedimensionsandtheraypaths,startingfromanypointinthesystem.Itisnotuniversallyapplicable,becauseparaxialcalculation

134、oftenleadstophysicallyimpossibledimensions,suchaswhenrayscrashorlensesoverlapattheiredges.C.G.Wynnecompiledatableforeachproblem.Ithadparaxialray-tracingdatainleft-handcolumnsandextendedfarenoughtotherighttofillintheSeidelaberrations.Hecompleteditbyhand,exploitingitsversatility.Itsusesincludedparaxia

135、lray-tracingandderivingcurvaturesandseparationsfromparaxialrays.However,WynnealsousedittocomputecurvaturesandseparationstochangetheSeidelaberrations,theaimsometimesbeingtobalancethefiniteaberrationsshownbytracingrealrays.Hesometimesseparatelysolvedtwoorthreesimultaneousequationsindoingthat,orusedthe

136、tableiteratively.Hewouldstartanoptimisationwithagoodsolutioninthatsense.Wynnestablesandhisray-tracingprogramalsoshowedtheanglesofincidenceofmarginalraysandofchiefraysateachopticalsurface.Largeanglesofincidencecanbesourcesofaberrationproblemsonsomesurfaces,andsmallanglesofincidencecanleadinghostimage

137、sfromstrayreflections.(C)RGBingham2005.Allrightsreserved.MatrixmethodsMatrixmethodsexistforparaxialraytracingandfortracingGaussianBeams.Asdiscussed,Iprefertousetheparaxialequationsseparately,orsolveswithinZEMAX.IfindthattheGaussianBeamfeaturesinZEMAXareconvenientandIdonotusethematrixmethodseparately

138、.Occasionally,IuseoneoftheGaussianbeamformulaeexplicitlytofindanangleorbeamsizebyhand,ineitherroughnotesorshortreports.AlltheformulaeIneedforthatseemtobeintheZEMAXmanual.(C)RGBingham2005.Allrightsreserved.Atheoreticalfiniteray,threeexamplesofselectedsystemsandtipson“pastingin”5pages(C)RGBingham2005.

139、Allrightsreserved.FiniteRayTracinganoteonSnellslawSnellslawin3Drrnnnnandn aretherefractiveindicesbeforeandafteranopticalsurfacen istheunitvectoralongthelocalsurfacenormalr and r areunitvectorsalongtheraybeforeandafterrefractionSnellslawstates:n (rn)=n (rn)Theray-tracingprogramcomputesr.Welford,Chapt

140、er4,explainshowthatishandled.Thenatureoftheequationforrmayillustratewhylow-aberrationsolutionsforthedesignsofcompoundlensesarecommonlyfoundbynumericalmethodsinvolvingraytracing,ratherthanbyanytheoreticalmethodinvolvingrefractedraysandhencer.(C)RGBingham2005.Allrightsreserved.Solves:Landscapelensexam

141、pleEx25-Landscape.zmxTheexampleshowshowacriticalfeatureofthislenscanbedesignedusingsolveswithinZEMAX.Thelensdesignissignificantinthatiteliminatessomeaberrationterms;itisaprecursortothedioptricanalogueoftheSchmidtcamera.(C)RGBingham2005.Allrightsreserved.Nosolves:fastasphericlensexampleSeeEx26-Fast_s

142、inglet.zmxGaussianlaserbeamThisexampleshowsamuchfasterlensforcomparison.Itismonochromaticandhasaverysmallfieldofview.(C)RGBingham2005.Allrightsreserved.Wemayhaveaworkingfileoflensdataintowhichwewanttoinsertorsubstitutesomesurfacesfromanotherfile.Itispossibletolosetrackofpickupsandsolvesifthesystemis

143、complex.Whensurfacesareinsertedordeleted,theprogramcannotalwaysupdatesolvessuchaspickupsandreferencestointermediatesurfacesintheMF.Theprogramcannotautomaticallyinsertpickupsbetweenexistinglinesandpasted-inlines.Tokeeptrackofthem,theeditsneedtobedoneintherightorder.Basically,thesolvesandMFsurfacerefe

144、renceswillmoreoftenbecorrectifwepastesurfacesintoaworkingfilebeforedeletinganyredundantsurfacesfromthatfile.Theresultaftersuchdeletionsbecomesthenewfile.So,(A)pasteinbeforedeletingand(B)pasteaheadofanylinesthatwillbedeleted.TheproceduredetailedinPasting-in.docminimiseserrors.ZEMAXsLensDataEditor:pas

145、ting-infromanotherfileToavoiderrors,seeWORDfilePasting-in.doc(C)RGBingham2005.Allrightsreserved.Ray-tracing the whole system aShack-HartmanwavefrontsensorEx27-S-H_WFS.zmxRaytracingthewholesystemisthemostreliableapproach.Incasessuchasthis,theinputraysaresimplyfrominfinity.Thisexampleistheperipheralwa

146、vefrontsensorintheAcquisitionandGuidersystemoftheGeminitelescopes.SeetheZEMAXfileforthenoteswithinit,andforthescaleofthisdiagram.Thediagramshowsonlypartofthefullray-tracethattakesineverythingfromtheGemini8-metretelescopetothewindowofthesensor,includingtheopticalprescriptionofthemicrolenses.Notes:The

147、doubletlensontherightmakesthespotarraysmaller.ThedesignofthatlensalsominimisesaberrationsintheShack-Hartmannspots.It takes account of the aberrations due to various microlenses and the window of the sensor,sofaraspossible,asIincludedthemintheraytrace.Inthiscase,Ididnotmodifyanycomponenttocompensatef

148、orproblemsdownstream,becausethatwouldcreateproblemsiflaterchangeswererequired.filterscollimatorpupilandmicrolenseswindowsensorLensallowingthecollimatorandmicrolensarraytobelargerthanthesensorStarimagein8-metretelescope(C)RGBingham2005.Allrightsreserved.OpticsandOpticalDesignR.G.BinghamSession4Sessio

149、n 4Looking at Seidel aberrations, and why we take the trouble.Image qualityGaussian Beams and Fibre Coupling(C)RGBingham2005.Allrightsreserved.SixpagesonrecognisingsomeSeidelaberrations(C)RGBingham2005.Allrightsreserved.WhyrecogniseSeidelaberrations?Eveninanimagingsystemthatisverycomplexindesign,tot

150、alaberrationsarenotzero.Seideltermswillbeincludedatsomelevel,balancinghigher-orderaberrations.Wecanlookforallsucheffectsinordertoseewhetherthedesignprocesswasused,orisbeingused,tobestadvantage,asdiscussedelsewhereinthiscourse.Apointthatweconsiderinthissessionisthattheprogramoffersanumberoftypesofplo

151、tinanalysiswindows,showingthesameaberrationsindifferentways.Wecanbecomefamiliarwiththesedifferentformsofoutput,anditisoftenhelpfultolookatmorethanoneoftheminunderstandingthebalanceofaberrations,perhapsinrelationtotheaimsofthedesign.Thusfollowingpagesrevisittheanalysiswindowsforthemostimportantcases,

152、sphericalaberrationandcoma.OtherSeidelswillbecomefamiliaraswecontinue.Afifthscreenwarnsusofapotentiallytime-wastingpitfall.Itarisesiftheopticalsystemdepartsfromaxisymmetryandwehypnoticallykeeplookingatitsaberrationfansinthesameway.ABCA,Seidelsphericalaberration,(x4);B,thenexttermup(x6);C,thesumofAan

153、dB-thebalance.IfitlookslikeAorB,askwhy!ItisveryusefultobeabletoseethisbothinOPDplotsandrayfans.(C)RGBingham2005.Allrightsreserved.Whyaresphericalaberrationandcomaimportantinaxisymmetricalsystems?Thisrelatestotheimportanceoftheaxialfieldpoint.Everyonelooksattheimagequalityachievedon-axis.Sphericalabe

154、rration(Seidelpluswhateverhigherorders)istheonlyaberrationatthatpointinanaxisymmetricalsystem.Next,comais“linear”.Itsamplitudeiszeroattheaxialfieldpointandproportionaltothefieldradius ;nothingcomesupquickerthanthat.Sothereisatleastasmallfieldofviewaroundtheaxialfieldpointwheretheaberrationsarepredom

155、inantlysphericalpluscoma.Withlargerfieldsofview,designsmaywellaimtominimiseandalsoequalisetheimagespreadatvariouspointsoverthefieldofviewandovertherangeofwavelengths.Thatmaybeachievedbynumericaloptimisationifeverythingissetupwell.Itresultsinsphericalaberrationandcomathatarenotreducedpracticallytozer

156、o.Theycanbalanceagainsthigher-orderaberrationsoff-axis.(C)RGBingham2005.Allrightsreserved.Coma;itswavefrontaberrationplot(OPD).Areminderfromsession2withtwoformsofdisplay W 3 1cosWavefrontaberration=relativeradiusinaperture=distancefromcentreoffieldEdgeoffieldMeantiltremovedOPDfans“WavefrontFunction”

157、Recall how this differs from spherical aberration(C)RGBingham2005.Allrightsreserved.SphericalaberrationandcomaraysSphericallyaberratedraysinayfanAnywhere in the field?ComaticraysinayfanOff-axisinasymmetricalsystem.RaysastheyreachtheimageItissometimessaidthatperipheralraysexperienceadifferentfocallen

158、gthfromaxialraysifthereiscoma.SeediscussionontheSineRuleelsewhere.Marginalrays(atedgeofstop)FocalsurfaceChiefray(throughcentreofstop)(C)RGBingham2005.Allrightsreserved.RayFansSphericalaberrationComa y 3 0orx 3 0 y 2 1=Transverserayaberration;y=radiusinstop;=distanceofimagefromcentreoffieldyxSpherica

159、laberrationComaThreefieldpointsineach*SeeEx11-Paraboloid.zmxandEx11A-Sphere.zmx(C)RGBingham2005.Allrightsreserved.Sphericalaberrationandcomaspots r 3 0 y 2 1=Transverserayaberration;r=radiusinaperture;=distancefromcentreoffield.AlsoseeWelford.(C)RGBingham2005.Allrightsreserved.Awarningregardingtheus

160、eofaberrationfanswhentheopticalsystemisnotaxisymmetrical.SeeEx28_Fan_Warning.ZMXInthissystem,bothOPDfansandbothrayfansunderstatetheamplitudeoftheaberrationsthatareactuallypresent.Thismayariseinanynon-axisymmetricalsystem.Also,Seideltheorydoesnotapplytoanon-axisymmetricalsystem.Wavefrontmap(C)RGBingh

161、am2005.Allrightsreserved.ImageQualityEightfollowingscreensrelatetothetopicofImageQuality.(C)RGBingham2005.Allrightsreserved.ImageQualityImage qualityreferstothesizeandshapeoftheimageofapointobject.Thecontextisthatsmallandsymmetricalaregood.Weworktoacriterionforimagequality.Thatcriterionwillbedecided

162、forthepurposeinhand.Forscientificimaging,itwillrelatetothecapabilityoftheimagetoyieldinformation.Itmayaimtolimitmorethanoneparameteroftheimageprofile.Inthedesignprocess,weexplorethetheoretical image quality.Itispartofanerror budgetthatwillhavemanyothercontributingfactorsseealatersession.Criteriafori

163、magequalityusuallyaimtocontroloneof:thepointspreadfunction(PSF);itsencircledenergyplot;itsModulationTransferFunction(MTF)-seeWelford;oraparameteroftheOPDmap.TheseapproachesallrelatetothePSFitself,butonemaybeclearlyrelevantormaybemuchfastertocomputeormeasure.Whenstraylightorthebackgroundsignallevelis

164、anissue,orwhenthepointspreadfunctionhasasharpcorebutextendedwings,contrastsuffers.Forone-offscientificoptics,theseissuesaredealtwithindividually.Formass-producedcompletesystems,MTFisoftenspecifiedandmeasuredforoverallcontrol.TheMTFcriterionandthetestmustthenreflectallpossibleoperatingconditions.Foll

165、owingslidesrelatetothequalityofafocalsystems,diffraction-limitedopticsandlasers.(C)RGBingham2005.Allrightsreserved.AfocalSystems,ImageQualityandTelescopesAnafocal systemisthespecialcasewhenaraypenciliscollimatedbothonentrancetoandexitfromanopticalsystem.Thesysteminthediagramcarriestworaypencils.Inan

166、afocalsystem,imagequalitycanbedefinedintermsofangulardeviationsoftheexitrays,butitisanalysedasanimageinray-tracing.WeinsertZemaxsParaxialsurfacebeforetheimagesurfacetocreaterealimages,asmentionedinrelationtothebeamexpandersofsession3.Weevaluatethoseimagesasusual.Wecansometimeschoosethefocallengthoft

167、heParaxialsurfaceandthecurvatureoftheimagesurfacetohavesomephysicalsignificanceinthecontext.Formally,atelescopeisanotherwordforanafocalopticalsystem.So,whenwelookatadistantscenethroughatelescope,includingbinoculars,weshouldfocustheeyetoinfinity.Forcomparison,whentheopticalsystemformsanormalimage,iti

168、sacamera.IoftenusethetermCassegraincameraratherthanCassegraintelescope,howeverlarge,ifitscurrentpurposeistoplaceadirectimageonaCCD.AsinEx23-Mirror_Reducer.zmx(C)RGBingham2005.Allrightsreserved.Obscurationandaberrationsatthediffractionlimit(1)Obscuration.Indiffraction-limitedimages,theproportionofthe

169、energyfallinginthecentralpeakoftheimagefallsroughlyinproportiontothe“fillingfactor”,theproportionoftheoverallbeamareathatisunobstructed.So,ifanunaberrated,unobscuredtelescopebecomes10 percentmaskedarea-wisebyacentralobscuration,thecentralpeakintensityinthediffraction-limitedimagefallsto80percentofwh

170、atitwas.Halfthis20percentlossisthelightsimplyblockedbytheobscuration,andhalfisthediffractioneffect,sendingenergyintoouterdiffractionrings.Neglectofthisdoubledlight-lossisapotentiallyseriouspitfall.Itaffectssomeexistingastronomicalinstrumentsandtelescopes.SeetheaxialimageinEx29_Diffraction_Peak.ZMX.(

171、2)Aberrationsdistributeyetmoreenergyoutofthecentraldiffractionpeak,initiallyintotheouterAiryrings.Largeraberrationsgiverisetospeckles.Thisgraphicshowscomainanoff-axisimageinEx29_Diffraction_Peak.ZMX.UsetheFFTortheHuygensmethodhere.Weseepartsofaboutfourbrightrings,includingtwospeckles.StrehlRatioisdi

172、scussedonthenextscreen.(C)RGBingham2005.Allrightsreserved.StrehlRatio-exampleAnidealimagingsystemwithacircularaperturedeliversanAirydiskasintheleft-handcross-section(relativeirradiance).Itwillbedegradedbyaberrations.Theaberrationintroducedtogeneratethefollowingdiagramsisr4sphericalaberrationplusfocu

173、sthatkeepsthepeak-to-valleyOPDminimised.ThevalueoftheStrehlRatioisequaltob/a, 0.5inthisexample.Whatisactuallyrequiredofotherapertureshapesmayneedtobeconsideredcase-by-case.Furthernotesandcommentsappearonthetwofollowingpages.ab(C)RGBingham2005.Allrightsreserved.StrehlRatiocalculationsandconventionAbe

174、rrationssendlightoutofthecentralpeakofanidealimageintoouterdiffractionringsandultimatelyintomorecomplexfeaturesofthePSF.TheStrehl Ratioisthepeakintensitydividedbythatwhichwouldhavebeenobtainediftherewerenoaberrations.SeeWelford.Strehl Ratio = 1 (2 / )2 (mean square wavefront aberration)Ifstartingfro

175、mther.m.s.aberrationcomputedseparately,checkwhetheritwasexpressedinthesamelengthunitsasthewavelengthabove!AfinalStrehlRatioequaltoorabove0.8isconsideredtobegoodinmostapplications.Thereishardlysuchathingasperfection. Raleighs quarter-wavelength rule. Ifthewavefrontforminganimagewilljustfitbetweentwoc

176、oncentricsphericalsurfaces/4apart,theimageisdiffraction-limited.Noticethatthisdeterminesthepeak-to-valley wavefront aberration.Ithasbeenshowntheoreticallythatwith/4p-vaberration,theStrehlRatiois0.8forarangeofdifferentwavefrontprofiles.Practicalcasesalsofollowtherule,aswillbeseeninZEMAXinthenormalcou

177、rseofwork.(C)RGBingham2005.Allrightsreserved.StrehlRatiowarningsTheStrehlratioisdefinedintextbooksfromtheexpectedaberrationsalone,andthatisamajorexampleofthepitfall.Obscurationinthebeam(seeapreviousslide)affectstherelativeintensityatthecentralpeakofanimage.ItcanmakeanopticalsystemfailtomeetaStrehlsp

178、ecification,orthespecificationmaybeimpossibletomeet.InZemaxsanalysiswindows,thetotaleffectofobscurationsandaberrationsoncentralintensityneedstobeconsideredinstages.ThefulleffectscannotbeseeninanysingleanalysiswindowinZemaxuntilwegetintoPhysicalOpticsPropagationandlookatthescaleofirradiance.All-refle

179、ctingopticalsystemsareoftensaidtobetotallyachromatic,performingequallywellatanywavelength-butweshouldnotneglectdiffractionsocasually.TheStrehlRatiowillbeafunctionofwavelength.(C)RGBingham2005.Allrightsreserved.Wavelength-compensationofimagesizeSeeEx30_Wavelength_Compensation.zmx.Aspecificationforper

180、formancemaybesatisfiedbyaPSFfallingshortofthediffractionlimitbutinwhichtheAirypatternisdiscernible.Ifso,ausefuleffectappliestoall-reflectingsystems.Itstabilisestheimageprofileoveralargerangeofwavelengths.Itworksasfollows.Atlongerwavelengths,theAirypatternislarger,butaberrationsaresmallerintermsofwav

181、elengthsandsendlessenergyintoouterrings.Theneteffectisdramatic,givingimageswithaconstantsamplingrequirementorpixelsizeoveratleasta4:1rangeofwavelengths.Theencircledenergycurvesintheexampleremainreasonablyclosetogetheratwavelengths0.25,0.50and1.00microns.(C)RGBingham2005.Allrightsreserved.Thecorrectf

182、ocusshouldgivethecorrectaberrationsFocusing.Achievingthecorrectfocusisacriticaltestoftheassembledlens.Wemightlookattheimageprofilepassingthroughfocus,comparingitwithspotdiagrams,orwemightlookatthewavefrontaberrationswithaninterferometer.Theaimisnottoseehowsmallwecanfocusanimage.Theaimistoseewhethert

183、heaberrationsinthefinishedlensresemblethetheoreticalaberrations.Perhapssurprisingly,thisusuallyworksevenwhenmanufacturingerrorshavenotbeenincludedinthelatestray-trace.Strehlratio.Obtaininglowaberrationsundertestbyfocusingasingleimage,andsodemonstratingaStrehlRatio,maynottellthewholestory.Forexample,

184、itcanconcealanassemblyerrorwherebyresidualsphericalaberrationhasthewrongsign.Otherwavelengthsorotherfieldpointswillfail.Ontheotherhand,iftheaberrationsaremeasurableandareclosetoexpectation,wearehomeanddry.Allowabledefocus.Focusaccuracyisalwaysintheerrorbudget.Theproblemismechanicalorthermal.Itismost

185、seriousinspaceinstruments,duetolaunch-stressormechanismissues.Ourdesignworkandtolerancingrun(latersession)allowustocheckthattheerrorbudgetisreasonable,beingawareoffocussensingandcontrol,mechanicalengineeringandcost.Wecanneverriskhavingasignificantdefocusaberrationintheerrorbudget.Tomeettherequiredto

186、talaberrations,wecouldenduptryingtoremoveotheraberrationsbymakingthelensmorecomplicated.(C)RGBingham2005.Allrightsreserved.GaussianBeamsEightpagesonGaussianBeamsandrelatedissues(C)RGBingham2005.Allrightsreserved.ModesinfreespaceIftheamplitudeandphaseofsomeaberratedwavefrontcanbemodelledalgebraically

187、,itmaybepossibletodescribethepropagationofthatwavefrontbytheory.Iftheanalyticalresultcouldberepresentedbyafewparameters,itcouldperhapsbeusedasifitwereanewly-discovered“mode”oftheelectromagneticwaveinfreespace.However,therewouldbeaninfinityofdifferentcasesandfewofthemwouldberemotelyworththecandle.Wha

188、tisimportantistobeawareofsomerelativelysimplemodesthatareusedinnumericalworkandintheoreticaldevelopment.Suchsimpleformscanhavepracticalrelevance,orcanbeusedasbasisfunctionsformorecomplexcases.Forexample,planewaves:anaberratedwavefrontcanbereducedtothesumofplanewaves,sothatafterthepropagationofthepla

189、newaves,theevolved,aberratedwavefrontisfoundbyre-addingthem.ThenHuygensexpandingsphericalwaveletsunderlieusefultheoryandvariousalgorithmsfornumericalwavepropagation.TheGaussian Beamisanotherfree-spacemode.(C)RGBingham2005.Allrightsreserved.GaussianbeamItisthebeamprovidedbylasers.Itpropagatesaccordin

190、gto“paraxial”formulae(ref.ZEMAXmanualandotherreferencestherein)thatarefasttocompute,althoughasopticaldesignerswehardlyusethem,exceptperhapsinveryearlystagesofthework.TheABCDMatrixisapackagedwayofdoingaparaxialray-trace.Theparaxialresultsuffersfromsevereapproximationsasmaybecomeclearinthefollowingpag

191、es.(C)RGBingham2005.Allrightsreserved.PropagatingGaussianBeamsinZEMAX.TheStandardorParaxialformulae.1:ZeroaberrationsTheparaxialGaussianBeamformulaedonotusenormalraytracingandZEMAXhandlesthemspecially.Inanyevent,theformulaeofferonlyanapproximation,merelyaparaxialcalculationthoughtheopticalsystem;the

192、resultisinvalidwhenusedforapracticallens.Thisisazero-aberrationexamplewithpropagationinfreespaceonly.SeeEx32_Parax_Gaussian.zmxTheopticalsysteminthisexampleismerelyanemptyspacewithathickness.TheonlydimensionsthataresetupintheLensDataEditorherearethewavelengthandthe1000mmzthicknessfromthestoptotheima

193、gesurface.ThenZEMAXsParaxialGaussianBeamwindowissettolaunchabeamwithawaistof0.05mmradius.Thisisnottobeconfusedwitharadiusofcurvature.Itistheradiusinthex and y directions tothe1/eamplitudepoint(the1/e2intensitypoint).Thetheoreticalbeamtowhichtheseconventionalformulaeapplyisinfiniteinlateralextentinal

194、lspaces;thisisaseriousapproximationintheuseoftheseformulaeforalens,asthereisnotruncationofenergyattheedgesoflenses,etc.ThebeamradiusandthesurfacefromwhichthebeamislaunchedarespecifiedintheSettingswindow.Itcanbeseeninthatwindowthatthebeamdilatesto3.5mmradiusinthe1000mmpathandthereareotherresults.This

195、SettingswindowisunusualinZemax.Tryinteractivelychangingtheparametersofthebeamthatislaunched.(C)RGBingham2005.Allrightsreserved.TheStandardorParaxialformulae.2:BewareofM2.Asmentioned,theGaussianBeamformulaeofferonlyanapproximation,merelyaparaxialcalculationthoughtheopticalsystem.Thisisanexamplewithab

196、errations.SeeEx33_Parax_Gaussian+abns.zmx(C)RGBingham2005.Allrightsreserved.2.NormalRay-tracingforGaussianbeamsAtruncatedGaussianBeamisjustanotherraypencil.ItcanbelaunchedinZEMAXbymeansofGaussianapodisation,uptoapodisationfactor4.Ordinaryray-tracingandthecorrespondinganalysisfeaturesarevalidfortheGa

197、ussianBeamandcorrectlyshowthebeamwaist,forexample.SeeEx31_Gaussian_Amp_Apod.zmx.ThereareexceptionswherePhysicalOpticsPropagationhastobeusedinanycase.Forexample,thebeammaybesignificantlytruncatedatsomeintermediatesurfaceandwemaywishtoevaluatethediffractionpathsoftheremainingenergy.ThentheuseofPOPisne

198、cessary.Thelocalwavefrontprofilemayneedtobestudied,ratherthanthatintheexitpupil,andagainPOPprovidestheresultrequired.Othercasesarerelated.Wemightwishtostudydiffractionataslit,ortheeffectofdiffractiononanominallycollimatedbeamoveralongpath,whichisnotshownbyparallelrays.However,theexampleusingnormalra

199、y-tracingistypicalofmanypracticalcases.(C)RGBingham2005.Allrightsreserved.3.PhysicalOpticsPropagationinZEMAXasappliedtoGaussianBeams.Thisisrelevantforlatersessions.ItshouldalsobeclearfromtheZEMAXmanual(whenPOPitselfis).(C)RGBingham2005.Allrightsreserved.Fibre-opticcouplingintegral(1)Thecouplinginteg

200、ralisusedtofindhowmuchpowerisreceivedbyanopticalfibreinanarbitraryincidentbeam.Theresultisoftenrequiredforfibre-couplingoptics,whereabeamistransmittedfromanotherfibreatsomekindofjoint.Itisalsousefultomodelphysicsexperimentswherethefibrepicksupunfocusedillumination.Itisaquestionofhowmuchpowergetsinto

201、thelow-orderwave-guidemodeofthefibre(theonethatisnormallyused).SeetheZEMAXmanualandreferencesthereinfortheformoftheintegral.SeeourexampleEx34_Fibre_Coupling.zmxandthenotesinitsTitle/Noteswindow!Furthercommentsontheintegralappearonthefollowingpage.TestbeamatinputisaGaussianBeam.Positionoffibretip(C)R

202、GBingham2005.Allrightsreserved.Fibre-opticcouplingintegral(2)Zemaxfullyevaluatesthecouplingintegral.Itisinterestingtoseehowitusesamplitudeandphase,notintensities.Owingtothesquaredtermswithinit,thevalueoftheintegralisthefractionoftheincidentbeampowerthatiscoupledintoawaveguidemodeinthefibre.Theintegr

203、alisevaluatedoveranyareawheretheincomingwaveandthewavemodeofthereceivingfibreoverlap.(Byreciprocity,thefibrewavemodecorrespondstotheprofileofphaseanamplitudethatthefibrewouldtransmit.)Thisareaoverwhichtheintegralisperformedcanbelocatedanywhere.Theintegralscanbecomplex.Ifthefibreisreceivingroughlycol

204、limatedillumination,wecanfindausefuleffectivecollectingareaofthefibretipforincomingpower.Theintegralisperformedoverthesmallbeamwaistatthecutendofthefibre.Thephaseofthefibremodeisflatthere.Letthebeamwaistradiustothe1/eamplitudepointber0,andlettheangletothatamplitudepointinthefarbeamfromthefibrebe0.Ne

205、xt,lettheareaofthefibretipbesmallsothatweconsidertheincomingwaveasaplanewavetiltedatangle,whichisagreatsimplification.Theeffectivecollectingareaofafibretipforincomingenergyistwicetheareaofthebeamwaisttothe1/eamplitudepoint.Power in = Irradiance * 2r0r0* exp(-2(tan /tan 0)2)CollectingareaforpowerTiltfactor(C)RGBingham2005.Allrightsreserved.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 营销创新

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号