第二章发酵代谢控制的基本原理与方法课件

上传人:pu****.1 文档编号:569709436 上传时间:2024-07-30 格式:PPT 页数:42 大小:2.05MB
返回 下载 相关 举报
第二章发酵代谢控制的基本原理与方法课件_第1页
第1页 / 共42页
第二章发酵代谢控制的基本原理与方法课件_第2页
第2页 / 共42页
第二章发酵代谢控制的基本原理与方法课件_第3页
第3页 / 共42页
第二章发酵代谢控制的基本原理与方法课件_第4页
第4页 / 共42页
第二章发酵代谢控制的基本原理与方法课件_第5页
第5页 / 共42页
点击查看更多>>
资源描述

《第二章发酵代谢控制的基本原理与方法课件》由会员分享,可在线阅读,更多相关《第二章发酵代谢控制的基本原理与方法课件(42页珍藏版)》请在金锄头文库上搜索。

1、第二章 发酵代谢控制的基本原理和方法 江苏农林职业技术学院江苏农林职业技术学院 生物工程系生物工程系 陈宏州陈宏州第一节 微生物的代谢与调节的生化基础 1.1.1.1.新陈代谢新陈代谢新陈代谢新陈代谢 发生在活细胞中的各种分解代谢和合成代谢的总发生在活细胞中的各种分解代谢和合成代谢的总发生在活细胞中的各种分解代谢和合成代谢的总发生在活细胞中的各种分解代谢和合成代谢的总 和,和,和,和,即:新陈代谢即:新陈代谢即:新陈代谢即:新陈代谢= = = =分解代谢分解代谢分解代谢分解代谢+ + + +合成代谢合成代谢合成代谢合成代谢 。新陈代谢又可。新陈代谢又可。新陈代谢又可。新陈代谢又可分为初级代谢和

2、次级代谢。分为初级代谢和次级代谢。分为初级代谢和次级代谢。分为初级代谢和次级代谢。 分解代谢分解代谢分解代谢分解代谢: : : :把复杂的有机物分子分解成简单的化合物,把复杂的有机物分子分解成简单的化合物,把复杂的有机物分子分解成简单的化合物,把复杂的有机物分子分解成简单的化合物,并释放能量的过程。并释放能量的过程。并释放能量的过程。并释放能量的过程。 合成代谢合成代谢合成代谢合成代谢: : : :由简单化合物合成复杂的大分子的过程。由简单化合物合成复杂的大分子的过程。由简单化合物合成复杂的大分子的过程。由简单化合物合成复杂的大分子的过程。 初级代谢初级代谢初级代谢初级代谢: : : :微生物

3、的生长、分化和繁殖所必需的代谢微生物的生长、分化和繁殖所必需的代谢微生物的生长、分化和繁殖所必需的代谢微生物的生长、分化和繁殖所必需的代谢活动。活动。活动。活动。 次级代谢次级代谢次级代谢次级代谢: : : :非微生物生命活动所必需的代谢活动非微生物生命活动所必需的代谢活动非微生物生命活动所必需的代谢活动非微生物生命活动所必需的代谢活动. . . .一、代谢概述代谢概述 2.初级代谢产物定义:定义: 微生物通过代谢活动所产生的、自身生长和繁微生物通过代谢活动所产生的、自身生长和繁 殖所必需的物质。殖所必需的物质。举例:举例: 氨基酸、核苷酸、多糖、脂类、维生素等。氨基酸、核苷酸、多糖、脂类、维

4、生素等。特征:特征:不同的微生物初级代谢产物基本相同;不同的微生物初级代谢产物基本相同;初级代谢产物合成过程是连续不断的。初级代谢产物合成过程是连续不断的。 3.次级代谢产物定义:定义: 微生物生长到一定阶段才产生的化学结构十分微生物生长到一定阶段才产生的化学结构十分 复杂、对该微生物无明显生理功能,或并非是复杂、对该微生物无明显生理功能,或并非是 微生物生长和繁殖所必需的物质。微生物生长和繁殖所必需的物质。举例:举例: 抗生素、毒素、激素、色素等。抗生素、毒素、激素、色素等。特征:特征: 不同的微生物次级代谢产物不同;不同的微生物次级代谢产物不同; 微生物生长到一定阶段才产生。微生物生长到一

5、定阶段才产生。 二 代谢调节的部位生物体的新陈代谢活动都是在细胞内进行的每个细胞不是独立的。而是相互联系分工合作,实际是像一个有一定组织结构的加工厂。细胞工厂的基本机件是生物催化剂酶微生物细胞体内具有一整套精确、合理、经济、高效的代谢机构。生物体有自我调节的能力。近年来对生物细胞的研究表明:微生物代谢过程的自我调节表现在控制营养物质进入细胞,酶与底物的接触和代谢物的流向等三个环节上。许多化合物代谢所在的部位是受到控制的: 1、通道 2、通量 3、限制其基质有形接近第二节第二节 发酵代谢调控发酵代谢调控从微生物发酵的历史角度看,最早的微生物发酵从微生物发酵的历史角度看,最早的微生物发酵是一个自然

6、发酵过程,现代微生物工业通常是是一个自然发酵过程,现代微生物工业通常是指微生物的指微生物的代谢控制发酵。代谢控制发酵。代谢控制发酵。代谢控制发酵。发酵代谢调控:发酵代谢调控:发酵代谢调控:发酵代谢调控:是指利用是指利用生物的、物理的、化学生物的、物理的、化学的的方法,人为的改变了微生物的生长代谢途径,方法,人为的改变了微生物的生长代谢途径,来提高目来提高目标产标产物的物的产产量和量和产产率,而率,而实现实现大大规规模模的工的工业业生生产产。 微生物有着精确的代谢调节系统,以保证上千种酶微生物有着精确的代谢调节系统,以保证上千种酶能正确无误地进行催化反应能正确无误地进行催化反应 微生物的代谢调节

7、方式很多,其中以调节代谢流的微生物的代谢调节方式很多,其中以调节代谢流的方式最为重要,它包括调节酶的合成量(方式最为重要,它包括调节酶的合成量(“粗调粗调”)和)和调节现成酶分子的催化活力(调节现成酶分子的催化活力(“细调细调”),两者往往密),两者往往密切配合和协调,以达到最佳调节效果切配合和协调,以达到最佳调节效果 通过自然缺损或人工突变获得微生物代谢调控的变通过自然缺损或人工突变获得微生物代谢调控的变异菌株,提供发酵工业用高产菌株异菌株,提供发酵工业用高产菌株 一、酶活性的调节一、酶活性的调节 酶活性的调节是指在酶分子水平上的一种代谢调节,酶活性的调节是指在酶分子水平上的一种代谢调节,它

8、是通过改变现成的酶分子活性来调节新陈代谢的速率,它是通过改变现成的酶分子活性来调节新陈代谢的速率,包括酶活性的激活和抑制包括酶活性的激活和抑制 酶活性的激活酶活性的激活系指在分解代谢途径中,后面的反应系指在分解代谢途径中,后面的反应可被较前面的中间产物所促进可被较前面的中间产物所促进 酶活性的抑制酶活性的抑制主要是反馈抑制,它主要表现在某代主要是反馈抑制,它主要表现在某代谢途径的末端产物(即终产物)过量时,这个产物可反谢途径的末端产物(即终产物)过量时,这个产物可反过来直接抑制该途径中第一个酶的活性,促使整个反应过来直接抑制该途径中第一个酶的活性,促使整个反应过程减慢或停止,避免终产物的过多累

9、积过程减慢或停止,避免终产物的过多累积酶活性的调节1.酶活性的激活 在激活剂的作用下,使原来无活性的酶变成有活性,在激活剂的作用下,使原来无活性的酶变成有活性,或使原来活性低的酶提高了活性的现象。或使原来活性低的酶提高了活性的现象。 代谢调节的激活作用代谢调节的激活作用主要是指代谢物对酶的激活。主要是指代谢物对酶的激活。 前体激活前体激活是指代谢途径中后面的酶促反应,可被该途是指代谢途径中后面的酶促反应,可被该途径中较前面的一个中间产物所促进。径中较前面的一个中间产物所促进。 代谢中间产物的反馈激活代谢中间产物的反馈激活是指代谢中间产物对该代谢是指代谢中间产物对该代谢途径的前面的酶起激活作用途

10、径的前面的酶起激活作用 2.酶活性的抑制 抑制和激活相反。由于某些物质的存在,降低酶活抑制和激活相反。由于某些物质的存在,降低酶活性,称为抑制。抑制可以是不可逆的,这将造成代谢作性,称为抑制。抑制可以是不可逆的,这将造成代谢作用的停止;抑制也有可逆的,当抑制剂除去后,酶活性用的停止;抑制也有可逆的,当抑制剂除去后,酶活性又恢复。在代谢调节过程中所发生的抑制现象主要是可又恢复。在代谢调节过程中所发生的抑制现象主要是可逆的,而且大多属于反馈抑制。逆的,而且大多属于反馈抑制。 反馈抑制反馈抑制是指代谢的末端产物对酶是指代谢的末端产物对酶( (往往是代谢途往往是代谢途径中的第一个酶径中的第一个酶) )

11、活性的抑活性的抑 制。反馈抑制作用在生物体制。反馈抑制作用在生物体内普通存在,它在维持细胞正常代谢、经济有效地利用内普通存在,它在维持细胞正常代谢、经济有效地利用代谢原料、以及适应环境的变化,都具有重要作用。包代谢原料、以及适应环境的变化,都具有重要作用。包括无分支代谢途径的调节和有分支代谢途径的调节。括无分支代谢途径的调节和有分支代谢途径的调节。 2.1 无分支代谢途径的调节无分支代谢途径的调节 无分支代谢途径的调节通常是在线形的代谢途径无分支代谢途径的调节通常是在线形的代谢途径中末端产物对催化第一步反应的酶活性有抑制作用。中末端产物对催化第一步反应的酶活性有抑制作用。 例如,在大肠杆菌中,

12、由苏氨酸例如,在大肠杆菌中,由苏氨酸( (ThrThr) )合成异亮氨合成异亮氨酸酸( (IIeuIIeu) )时,异亮氨酸对催化反应途径中的第一步反时,异亮氨酸对催化反应途径中的第一步反应的苏氨酸脱氨酶应的苏氨酸脱氨酶(TD)(TD)有抑制作用。有抑制作用。2.2 有分支代谢途径的调节有分支代谢途径的调节 在有两种或两种以上的末端产物的分支合在有两种或两种以上的末端产物的分支合成代谢途径中,调节方式较复杂,其共同特点成代谢途径中,调节方式较复杂,其共同特点是每个分支途径的末端产物控制分支点后的第是每个分支途径的末端产物控制分支点后的第一个酶,同时每个末端产物又对整个途径的第一个酶,同时每个末

13、端产物又对整个途径的第一个酶有部分的抑制作用,分支代谢的反馈调一个酶有部分的抑制作用,分支代谢的反馈调节方式有多种:节方式有多种: (1) 同功酶调节 同功酶是指能催化相同的生化反应,但酶蛋白分子同功酶是指能催化相同的生化反应,但酶蛋白分子结构有差异的一类酶,它们虽同存于一个个体或同一组结构有差异的一类酶,它们虽同存于一个个体或同一组织中,但在生理、免疫和理化特性上却存在着差别织中,但在生理、免疫和理化特性上却存在着差别 同功酶的主要功能在于其代谢调节,在分支代谢途同功酶的主要功能在于其代谢调节,在分支代谢途径中,如果在分支点以前的一个较早的反应是由几个同径中,如果在分支点以前的一个较早的反应

14、是由几个同功酶所催化时,则分支代谢的几个最终产物往往分别对功酶所催化时,则分支代谢的几个最终产物往往分别对这几个同功酶发生抑制作用。这几个同功酶发生抑制作用。 (2) 协同反馈抑制 指分支代谢途径中的几个末端产物同时过量时才能指分支代谢途径中的几个末端产物同时过量时才能抑制共同途径中的第一个酶的一种反馈调节方式。抑制共同途径中的第一个酶的一种反馈调节方式。 例如,荚膜红假单胞菌中天门冬氨酸族氨基酸生例如,荚膜红假单胞菌中天门冬氨酸族氨基酸生物合成途径中,天门冬氨酸激酶物合成途径中,天门冬氨酸激酶(AK)(AK)是受末端产物赖是受末端产物赖氨酸和苏氨酸的协同反馈抑制。氨酸和苏氨酸的协同反馈抑制。

15、(3)合作反馈抑制 指两种末端产物同时存在时,可以起着比一种末指两种末端产物同时存在时,可以起着比一种末端产物大得多的反馈抑制作用。端产物大得多的反馈抑制作用。 例如,在嘌呤核苷酸的例如,在嘌呤核苷酸的生物合成途径中,催化生物合成途径中,催化第一步反应的酶,第一步反应的酶,5-5-磷酸磷酸核糖核糖-1-1-焦磷酸焦磷酸(PRPP)(PRPP)的的酰胺基转移酶,可被各酰胺基转移酶,可被各种嘌呤核苷酸产物种嘌呤核苷酸产物( (如如AMPAMP、GMP)GMP)所抑制。例所抑制。例如,一定量的如,一定量的GMPGMP或或AMPAMP仅能抑制仅能抑制5-5-磷酸核磷酸核糖糖-1-1-焦磷酸酰胺基转移焦

16、磷酸酰胺基转移酶活力的酶活力的1010,而当二,而当二者混合时,则可抑制其者混合时,则可抑制其酶活力的酶活力的5050。因为这。因为这些嘌呤核苷酸与些嘌呤核苷酸与5-5-磷酸核磷酸核糖糖-1-1-焦磷酸并无结构相焦磷酸并无结构相似性,又因该酶是一种似性,又因该酶是一种调节酶,调节酶,GMPGMP和和AMPAMP可可能分别结合在该酶的不能分别结合在该酶的不同部位上。同部位上。 (4) 累积反馈抑制 在分支代谢途径中各种末端产物单独过量时,它们各自能在分支代谢途径中各种末端产物单独过量时,它们各自能对途径中的第一个反应的酶仅产生较小的抑制作用。一种末端对途径中的第一个反应的酶仅产生较小的抑制作用。

17、一种末端产物单独过量并不影响其它末端产物的形成,只有当几种末端产物单独过量并不影响其它末端产物的形成,只有当几种末端产物同时过量时,才对途径中的第一个酶产生较大的抑制。产物同时过量时,才对途径中的第一个酶产生较大的抑制。 例如,大肠杆菌谷氨酰胺合成例如,大肠杆菌谷氨酰胺合成酶酶(GS)(GS)活性的调节是一个典型活性的调节是一个典型的累积反馈调节的例子。谷氨的累积反馈调节的例子。谷氨酰胺由谷氨酸、铵和酰胺由谷氨酸、铵和ATPATP合成。合成。谷氨酰胺中的酰胺基是色氨酸、谷氨酰胺中的酰胺基是色氨酸、组氨酸、氨基甲酰磷酸、组氨酸、氨基甲酰磷酸、6-6-磷磷酸葡萄糖胺、酸葡萄糖胺、CTPCTP、AM

18、PAMP、GMPGMP等化合物生物合成过程等化合物生物合成过程中的氮源。谷氨酰胺合成酶被中的氮源。谷氨酰胺合成酶被谷氨酰胺代谢的每种末端产物谷氨酰胺代谢的每种末端产物以及丙氨酸和甘氨酸所累积抑以及丙氨酸和甘氨酸所累积抑制。谷氨酰胺合成酶对这些抑制。谷氨酰胺合成酶对这些抑制物中的每一种末端产物均有制物中的每一种末端产物均有特异的结合部位。当上述特异的结合部位。当上述8 8种种末端产物同时过量都与酶结合末端产物同时过量都与酶结合时,谷氨酰胺合成酶的活性将时,谷氨酰胺合成酶的活性将受到最大的抑制。受到最大的抑制。 (5)顺序反馈抑制 分支代谢途径中的两个末端产物,不能直接抑分支代谢途径中的两个末端产

19、物,不能直接抑制途径中的第一个酶,只有当两个末端产物都过量制途径中的第一个酶,只有当两个末端产物都过量时,才能对途径中的第一个酶有抑制作用。时,才能对途径中的第一个酶有抑制作用。 例如,枯草杆菌在芳香族氨基酸合成中,色氨酸例如,枯草杆菌在芳香族氨基酸合成中,色氨酸(Try)(Try)抑制邻氨抑制邻氨基苯甲酸合成酶基苯甲酸合成酶(AS)(AS),苯丙氨酸,苯丙氨酸( (PhePhe) )抑制预苯酸脱水酶抑制预苯酸脱水酶(PT)(PT),酪氨酸,酪氨酸(Tyr)(Tyr)抑制预苯酸脱氢酶抑制预苯酸脱氢酶(PD)(PD),预苯酸和分支酸又部,预苯酸和分支酸又部分地抑制分地抑制7-7-磷酸磷酸-2-2

20、-酮酮-3-3-脱氧庚糖酸合成酶脱氧庚糖酸合成酶(DS)(DS)。EPEP:磷酸烯醇丙酮酸;:磷酸烯醇丙酮酸;E4PE4P:4-4-磷酸赤藓糖;磷酸赤藓糖;DAHPDAHP:7-7-磷酸磷酸-2-2-酮酮-3-3-脱氧脱氧庚糖酸;庚糖酸;CACA:分支酸;:分支酸;PerPer:预苯酸;:预苯酸;AAAA:邻氨基苯甲酸;:邻氨基苯甲酸;HPPAHPPA:对羟:对羟基苯丙酮酸;基苯丙酮酸;PPAPPA:苯丙酮酸;:苯丙酮酸;TyrTyr:酪氨酸;:酪氨酸;TryTry:色氨酸;:色氨酸;PhePhe:苯丙氨:苯丙氨酸;酸;I I:7-7-磷酸磷酸-2-2-酮酮-3-3-脱氧庚糖酸合成酶;脱氧庚糖

21、酸合成酶;II II:邻氨基苯甲酸合成酶;:邻氨基苯甲酸合成酶;IIIIII:分支酸变位酶;:分支酸变位酶;IVIV:预苯酸脱氢酶;:预苯酸脱氢酶;V V:预苯酸脱水酶:预苯酸脱水酶 二、酶合成的调节二、酶合成的调节 酶合成的调节是一种通过调节酶的合成量进而调节代谢酶合成的调节是一种通过调节酶的合成量进而调节代谢 速率的调节机制,这是一种在基因水平上的代谢调节速率的调节机制,这是一种在基因水平上的代谢调节 凡能促进酶生物合成的现象,称为诱导凡能促进酶生物合成的现象,称为诱导 能阻碍酶生物合成的现象,则称为阻遏。能阻碍酶生物合成的现象,则称为阻遏。 举例:举例: 亮白曲霉原来不能合成蔗糖酶,所以

22、不能利用蔗糖,但亮白曲霉原来不能合成蔗糖酶,所以不能利用蔗糖,但如果在培养基内加入蔗糖,一段时间后,可合成蔗糖酶,并如果在培养基内加入蔗糖,一段时间后,可合成蔗糖酶,并利用蔗糖。利用蔗糖。两种调节的对比酶合成的调节酶合成的调节酶合成的调节酶合成的调节酶活性的调节酶活性的调节酶活性的调节酶活性的调节不不不不同同同同点点点点调节对象调节对象调节对象调节对象通过酶量的变化通过酶量的变化通过酶量的变化通过酶量的变化控制代谢速率控制代谢速率控制代谢速率控制代谢速率控制酶活性,不涉控制酶活性,不涉控制酶活性,不涉控制酶活性,不涉及酶量变化及酶量变化及酶量变化及酶量变化调节效果调节效果调节效果调节效果相对缓

23、慢相对缓慢相对缓慢相对缓慢快速、精细快速、精细快速、精细快速、精细调节机制调节机制调节机制调节机制基因水平调节,基因水平调节,基因水平调节,基因水平调节,调节控制酶合成调节控制酶合成调节控制酶合成调节控制酶合成代谢调节,它调节代谢调节,它调节代谢调节,它调节代谢调节,它调节酶活性酶活性酶活性酶活性相同相同相同相同点点点点细胞内两种方式同时存在,密切配合,高效、准细胞内两种方式同时存在,密切配合,高效、准细胞内两种方式同时存在,密切配合,高效、准细胞内两种方式同时存在,密切配合,高效、准确控制代谢的正常进行。确控制代谢的正常进行。确控制代谢的正常进行。确控制代谢的正常进行。1. 诱导 根据酶合成

24、与底物的关系将酶分为组成型与诱导型根据酶合成与底物的关系将酶分为组成型与诱导型两类。两类。 组成酶是细胞固有的酶,其合成受相应基因控制,组成酶是细胞固有的酶,其合成受相应基因控制,与底物、底物结构类似物及环境条件无关,它主要用于与底物、底物结构类似物及环境条件无关,它主要用于调节初级代谢。调节初级代谢。 诱导酶是细胞为适应外来底物或底物结构类似物而诱导酶是细胞为适应外来底物或底物结构类似物而临时合成的酶。如临时合成的酶。如E.coliE.coli在含乳糖培养基上产生的在含乳糖培养基上产生的-半乳半乳糖苷酶和半乳糖苷渗透酶就是由乳糖存在而诱导产生的。糖苷酶和半乳糖苷渗透酶就是由乳糖存在而诱导产生

25、的。能促进诱导酶产生的物质称为诱导物。底物、难以代谢能促进诱导酶产生的物质称为诱导物。底物、难以代谢的底物结构类似物及底物前体均可作为诱导物。的底物结构类似物及底物前体均可作为诱导物。 酶合成的诱导的机制 在没有诱导物存在时,调节基因在没有诱导物存在时,调节基因R R编码的阻遏蛋白与操纵基编码的阻遏蛋白与操纵基因因O O相结合,使附着于启动基因相结合,使附着于启动基因P P上的上的RNARNA聚合酶不能通过,从聚合酶不能通过,从而阻止了而阻止了RNARNA聚合酶对结构基因聚合酶对结构基因S S的转录;当诱导物存在时,阻的转录;当诱导物存在时,阻遏蛋白因受诱导物作用而构型发生变化,失去与操纵基因

26、的结合遏蛋白因受诱导物作用而构型发生变化,失去与操纵基因的结合能力,从操纵基因上解脱下来,使能力,从操纵基因上解脱下来,使RNARNA聚合酶能对结构基因进聚合酶能对结构基因进行转录,进而翻译成酶蛋白。行转录,进而翻译成酶蛋白。 2.阻遏 在在微微生生物物的的代代谢谢过过程程中中,当当某某途途径径的的末末端端产产物物过过量量时时,可可通通过过阻阻碍碍该该代代谢谢途途径径中中包包括括关关键键酶酶在在内内的的一一系系列列酶酶的的生生物物合合成成,彻彻底底控控制制代代谢谢和和末末端端产产物物合合成成。阻阻遏遏作作用用有有利利于于微微生生物物从从合合成成源源头头节节省省有有限限的的养养料料与与能能量。量

27、。 阻遏可分为末端产物阻遏和分解代谢物阻遏。阻遏可分为末端产物阻遏和分解代谢物阻遏。 酶合成的阻遏的机制 终产物的反馈阻遏在转录水平上进行,终产物为辅阻遏物,终产物的反馈阻遏在转录水平上进行,终产物为辅阻遏物,它可激活由调节基因它可激活由调节基因R R生成的无活性阻遏蛋白。辅阻遏物与阻生成的无活性阻遏蛋白。辅阻遏物与阻遏蛋白结合形成活化阻遏物,它能与操纵基因遏蛋白结合形成活化阻遏物,它能与操纵基因O O结合,阻止结合,阻止RNARNA聚合酶对结构基因聚合酶对结构基因S S的转录。的转录。 2.1 2.1 末端产物阻遏末端产物阻遏 指由某代谢途径末端产物的过量累积而引指由某代谢途径末端产物的过量

28、累积而引起的阻遏。对直线式反应途径来说,末端产物起的阻遏。对直线式反应途径来说,末端产物阻遏的情况较为简单,即产物作用于代谢途径阻遏的情况较为简单,即产物作用于代谢途径中的各种酶,使之合成受阻遏。中的各种酶,使之合成受阻遏。 2.2 2.2 分解代谢物阻遏分解代谢物阻遏 指细胞内同时有两种分解底物(碳源或氮源)存在指细胞内同时有两种分解底物(碳源或氮源)存在时,利用快的那种分解底物会阻遏利用慢的底物的有关时,利用快的那种分解底物会阻遏利用慢的底物的有关酶合成的现象。酶合成的现象。 分解过程中所产生的中间代谢物引起的阻遏作用。分解过程中所产生的中间代谢物引起的阻遏作用。 某些中间代谢物或末端代谢

29、物的过量累积而阻遏代某些中间代谢物或末端代谢物的过量累积而阻遏代谢途径中一些的酶合成。谢途径中一些的酶合成。 如,葡萄糖效应。如,葡萄糖效应。三、能荷调节三、能荷调节 能荷:即指细胞中能荷:即指细胞中能荷:即指细胞中能荷:即指细胞中ATPATP、ADPADP、AMPAMP系统中可为代谢系统中可为代谢系统中可为代谢系统中可为代谢反应供能的高能磷酸键的量度。反应供能的高能磷酸键的量度。反应供能的高能磷酸键的量度。反应供能的高能磷酸键的量度。 能荷的大小与细胞中能荷的大小与细胞中能荷的大小与细胞中能荷的大小与细胞中ATPATP、ADPADP和和和和AMPAMP的相对含量有的相对含量有的相对含量有的相

30、对含量有关。当细胞中全部腺苷酸均以关。当细胞中全部腺苷酸均以关。当细胞中全部腺苷酸均以关。当细胞中全部腺苷酸均以ATPATP形式存在时,则能荷最形式存在时,则能荷最形式存在时,则能荷最形式存在时,则能荷最大,为大,为大,为大,为100%100%,即能荷为满载。当全部以,即能荷为满载。当全部以,即能荷为满载。当全部以,即能荷为满载。当全部以AMPAMP形式存在时,形式存在时,形式存在时,形式存在时,则能荷最小,为零。当全部以则能荷最小,为零。当全部以则能荷最小,为零。当全部以则能荷最小,为零。当全部以ADPADP形式存在时,能荷居中,形式存在时,能荷居中,形式存在时,能荷居中,形式存在时,能荷居

31、中,为为为为50%50%。若三者并存时,能荷则随三者含量的比例不同而。若三者并存时,能荷则随三者含量的比例不同而。若三者并存时,能荷则随三者含量的比例不同而。若三者并存时,能荷则随三者含量的比例不同而表现不同的百分值。表现不同的百分值。表现不同的百分值。表现不同的百分值。 研究证明,细胞中能荷高时,抑制了研究证明,细胞中能荷高时,抑制了研究证明,细胞中能荷高时,抑制了研究证明,细胞中能荷高时,抑制了ATPATP的生成,但的生成,但的生成,但的生成,但促进了促进了促进了促进了ATPATP的利用,也就是说,高能荷可促进分解代谢,的利用,也就是说,高能荷可促进分解代谢,的利用,也就是说,高能荷可促进

32、分解代谢,的利用,也就是说,高能荷可促进分解代谢,并抑制合成代谢。相反,低能荷则促进合成代谢,抑制分并抑制合成代谢。相反,低能荷则促进合成代谢,抑制分并抑制合成代谢。相反,低能荷则促进合成代谢,抑制分并抑制合成代谢。相反,低能荷则促进合成代谢,抑制分解代谢。解代谢。解代谢。解代谢。第三节第三节 代谢调控在工业发酵中的应用代谢调控在工业发酵中的应用 正常情况下,微生物代谢产物由于反馈抑制和反正常情况下,微生物代谢产物由于反馈抑制和反馈阻遏是不会大量积累的。但自然界里常发现一些微馈阻遏是不会大量积累的。但自然界里常发现一些微生物产生了过量的代谢产物,这主要是由于这些微生生物产生了过量的代谢产物,这

33、主要是由于这些微生物代谢机制失调造成的。物代谢机制失调造成的。 在工业发酵上,可运用遗传的和环境的控制和人为在工业发酵上,可运用遗传的和环境的控制和人为的代谢调节,使其产物大量积累。如氨基酸发酵生产的代谢调节,使其产物大量积累。如氨基酸发酵生产就是在代谢调节研究的基础上发展起来的。就是在代谢调节研究的基础上发展起来的。 目前已经能够在转录和翻译上控制微生物的代谢,目前已经能够在转录和翻译上控制微生物的代谢,使微生物工业发酵进入了一个崭新阶段,即代谢控制使微生物工业发酵进入了一个崭新阶段,即代谢控制发酵阶段。发酵阶段。 一般改变微生物代谢调节的方法有如下几种一般改变微生物代谢调节的方法有如下几种

34、: : 第一种是采用物理化学诱变,获得营养缺陷型,这是氨基酸第一种是采用物理化学诱变,获得营养缺陷型,这是氨基酸生产菌育种的最有效的办法。营养缺陷型是指某菌种失去合生产菌育种的最有效的办法。营养缺陷型是指某菌种失去合成某种物质的能力,即合成途径中某一步发生突变,使合成成某种物质的能力,即合成途径中某一步发生突变,使合成反应不能完成,最终产物不能积累到引起反馈调节的浓度,反应不能完成,最终产物不能积累到引起反馈调节的浓度,从而有利于中间产物的积累。例如,用高丝氨酸缺陷型生产从而有利于中间产物的积累。例如,用高丝氨酸缺陷型生产菌进行赖氨酸发酵。一般在形成赖氨酸的过程中有菌进行赖氨酸发酵。一般在形成

35、赖氨酸的过程中有3 3种产物生种产物生成,只有赖氨酸和苏氨酸都达到一定浓度时,才能形成反馈成,只有赖氨酸和苏氨酸都达到一定浓度时,才能形成反馈抑制,从高丝氨酸切断这两个分支后,不能形成苏氨酸,也抑制,从高丝氨酸切断这两个分支后,不能形成苏氨酸,也就不能形成反馈抑制。最后使赖氨酸的大量积累,这是打破就不能形成反馈抑制。最后使赖氨酸的大量积累,这是打破代谢调节的第一种方法。代谢调节的第一种方法。 第二种方法是应用抗反馈调节突变法。第二种方法是应用抗反馈调节突变法。 第三种就是控制发酵条件,改变细胞的渗透性。第三种就是控制发酵条件,改变细胞的渗透性。 一、应用营养缺陷型菌株以解除正常的反馈调节 在直

36、线式的合成途径中,营养缺陷型突变株只能累在直线式的合成途径中,营养缺陷型突变株只能累积中间代谢物而不能累积最终代谢物。积中间代谢物而不能累积最终代谢物。 在分支代谢途径中,通过解除某种反馈调节,就可在分支代谢途径中,通过解除某种反馈调节,就可以使某一分支途径的末端产物得到累积。以使某一分支途径的末端产物得到累积。天冬氨酸天冬氨酸天冬氨酸天冬氨酸黄色短杆菌的代谢过程甲硫氨酸甲硫氨酸甲硫氨酸甲硫氨酸苏氨酸苏氨酸苏氨酸苏氨酸赖氨酸赖氨酸赖氨酸赖氨酸中间产物中间产物中间产物中间产物 中间产物中间产物中间产物中间产物抑制抑制抑制抑制高丝氨酸高丝氨酸高丝氨酸高丝氨酸天冬氨酸天冬氨酸天冬氨酸天冬氨酸人工控制

37、黄色短杆菌的代谢过程生产赖氨酸中间产物中间产物中间产物中间产物 中间产物中间产物中间产物中间产物甲硫氨酸甲硫氨酸甲硫氨酸甲硫氨酸苏氨酸苏氨酸苏氨酸苏氨酸高丝氨酸高丝氨酸高丝氨酸高丝氨酸不能合成可以大可以大量积累量积累赖赖 氨氨 酸酸人工诱变的人工诱变的人工诱变的人工诱变的菌种不能产生菌种不能产生菌种不能产生菌种不能产生二、应用抗反馈调节的突变株解除反馈调节 抗反馈调节突变菌株,指对反馈抑制不敏感或对阻抗反馈调节突变菌株,指对反馈抑制不敏感或对阻遏有抗性的组成型菌株,或兼而有之的菌株。遏有抗性的组成型菌株,或兼而有之的菌株。 在这类菌株中,因其反馈抑制或阻遏已解除,或是在这类菌株中,因其反馈抑制

38、或阻遏已解除,或是反馈抑制和阻遏已同时解除,所以能分泌大量的末端代反馈抑制和阻遏已同时解除,所以能分泌大量的末端代谢产物。谢产物。 三、 控制细胞膜的渗透性 微生物的细胞膜对于细胞内外物质的运输具有高微生物的细胞膜对于细胞内外物质的运输具有高度选择性。度选择性。 细胞内的代谢产物高浓度累积着,并自然地通过细胞内的代谢产物高浓度累积着,并自然地通过反馈阻遏限制了它们的进一步合成。反馈阻遏限制了它们的进一步合成。 采取生理学或遗传学方法,改变细胞膜的透性,采取生理学或遗传学方法,改变细胞膜的透性,使细胞内的代谢产物迅速渗漏到细胞外。这种解除末使细胞内的代谢产物迅速渗漏到细胞外。这种解除末端产物反馈抑制作用的菌株,可以提高发酵产物的产端产物反馈抑制作用的菌株,可以提高发酵产物的产量。量。 课外作业:课外作业:1. 1.微生物初级代谢和次级代谢的定义以及特征?微生物初级代谢和次级代谢的定义以及特征?2. 2.发酵代谢调控的定义和意义?发酵代谢调控的定义和意义?3. 3.改变微生物代谢调节的方法?改变微生物代谢调节的方法?4. 4.发酵菌株营养缺陷型的定义?发酵菌株营养缺陷型的定义?

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号