自动控制理论:4-4 系统性能分析

上传人:工**** 文档编号:569474731 上传时间:2024-07-29 格式:PPT 页数:45 大小:997.50KB
返回 下载 相关 举报
自动控制理论:4-4 系统性能分析_第1页
第1页 / 共45页
自动控制理论:4-4 系统性能分析_第2页
第2页 / 共45页
自动控制理论:4-4 系统性能分析_第3页
第3页 / 共45页
自动控制理论:4-4 系统性能分析_第4页
第4页 / 共45页
自动控制理论:4-4 系统性能分析_第5页
第5页 / 共45页
点击查看更多>>
资源描述

《自动控制理论:4-4 系统性能分析》由会员分享,可在线阅读,更多相关《自动控制理论:4-4 系统性能分析(45页珍藏版)》请在金锄头文库上搜索。

1、4.4 系统性能分析系统性能分析 7/29/20241闭环系统零、极点位置对时间响应性能的影响,可总结如下:1、稳定性。如果闭环极点全部位于s左半平面,则系统一定是稳定的,即稳定只与闭环极点位置有关,而与闭环零点位置无关。2、运动形式。如果闭环系统无零点,且闭环极点均为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点,则时间响应一般是振荡的。3、超调量。超调量主要取决于闭环复数主导极点的衰减率并与其它闭环零、极点接近坐标原点的程度有关。7/29/202424、调节时间。调节时间主要取决于最靠近虚轴的闭环复数极点的实数绝对值1=n,如果实数极点距虚轴最近,并且它附近没有实数零点,则调节

2、时间主要取决于该实数极点的模值。5、实数零、极点影响。零点减小系统阻尼,使峰值时间提前,超调量增大;极点增加系统阻尼,使峰值时间滞后,超调量减小。它们的作用,随着其本身接近坐标原点的程度而加强。6、偶极子及其处理。如果零、极点之间的距离比它们本身模值小一个数量级,则它们就构成了偶极子。远离原点的偶极子,其影响可略;接近原点的偶极子,其影响必须考虑。7、主导极点。在s平面上,最靠近虚轴而附近又无闭环零点的一些闭环极点,对系统性能影响最大,称为主导极点,凡比主导极点的实部大6倍以上的其他闭环零、极点,其影响均可忽略。例1:某单位反馈系统的开环传递函数为:7/29/20243(1)绘制系统的根轨迹草

3、图;(2)用根轨迹法确定使系统稳定的Kg值范围;(3)用根轨迹法确定使系统的阶跃响应不出现超调的Kg最大取值。解:(1)闭环系统特征方程为7/29/202447/29/202457/29/202467/29/202477/29/202487/29/202497/29/2024107/29/2024117/29/2024127/29/2024137/29/2024147/29/202415利用根轨迹,可以对闭环系统的性能进行分析和校正v由给定参数确定闭环系统的零极点的位置;v分析参数变化对系统稳定性的影响;v分析系统的瞬态和稳态性能;v根据性能要求确定系统的参数;v对系统进行校正。7/29/20

4、2416一、 条件稳定系统的分析 例4-11:设开环系统传递函数为:试绘制根轨迹并讨论使闭环系统稳定时的区值范围。开环极点:0,-4,-6,零点:实轴上根轨迹区间:渐进线:与实轴的交点:倾角:解根据绘制根轨迹的步骤,可得:7/29/202417分离角(点):3.9497.4579.3758.805.97131.6280-4-3.5-3-2.5-2.0-1.5-1-0.50s的最大值为9.375,这时s=-2.5,是近似分离点。由:可以求得分离点。近似求法:分离点在-4,0之间。7/29/202418入射角:与虚轴的交点(略)。这时的增益值:由图可知:当和时,系统是稳定的(为什么?);当时,系统

5、是不稳定的。左图是用Matlab工具绘制的。7/29/202419条件稳定系统:参数在一定的范围内取值才能使系统稳定,这样的系统叫做条件稳定系统。v具有正反馈的环节。下面的系统就是条件稳定系统的例子:v开环非最小相位系统,其闭环系统的根轨迹必然有一部分在s的右半平面;7/29/202420例非最小相位系统:,试确定使系统稳定时的增益值。解:根轨迹如右:有闭环极点在右半平面,系统是不稳定的。显然稳定临界点在原点。该点的增益临界值为。闭环特征方程为:,当s=0时,所以,系统稳定的条件是:7/29/202421二、瞬态性能分析和开环系统参数的确定 利用根轨迹可以清楚的看到开环根轨迹增益或其他开环系统

6、参数变化时,闭环系统极点位置及其瞬态性能的改变情况。以二阶系统为例:开环传递函数为闭环传递函数为共轭极点为:在s平面上的分布如右图:闭环极点的张角为:所以称为阻尼角。斜线称为等阻尼线。7/29/202422我们知道闭环二阶系统的主要的性能指标是超调量和调整时间。这些性能指标和闭环极点的关系如下:的关系如下图若闭环极点落在下图中红线包围的区域中,有:7/29/202423上述结论也可应用于具有主导极点的高阶系统中。如下例:例4-12单位反馈系统的开环传递函数为:若要求闭环单位阶跃响应的最大超调量,试确定开环放大系数。解:首先画出根轨迹如右。由图可以看出:根轨迹与虚轴的交点为+j5,-j5,这时的

7、临界增益当时,闭环系统不稳定。7/29/202424下面计算超调量和阻尼角的关系。由于:当时解得:这是一个三阶系统,从根轨迹上看出,随着的增加,主导极点越显著。所以可以用二阶系统的性能指标近似计算。在根轨迹图上画两条与实轴夹角为的直线,与根轨迹交与A、B两点。则A、B两点就是闭环共轭主导极点,这时系统的超调量为18%。通过求A、B两点的坐标,可以确定这时的根轨迹增益,进而求得开环放大系数k。设A点坐标为:,则:(1)相角条件为:(2)7/29/202425由(1),(2)式解得:共轭主导极点为:。计算对应的根轨迹增益。由幅值条件:解得:开环传递函数以的形式表示时,k称为开环放大系数。显然的关系

8、为:,式中不计0极点。所以,开环放大系数:由于闭环极点之和等于开环极点之和,所以另一个闭环极点为:7/29/202426特别提示特别提示:开环零、极点对根轨迹形状的影响是值得注意的。q一般说,开环传递函数在s左半平面增加一个极点将使原根轨迹右移。从而降低系统的相对稳定性,增加系统的调整时间。7/29/2024277/29/202428q若在开环传递函数中增加一个零点,则原根轨迹向左移动。从而增加系统的稳定性,减小系统响应的调整时间。7/29/202429Matlab参考书推荐:q现代控制工程,美KatsuhikoOgats,卢伯英译,电子工业出版社qMATLAB控制系统设计,欧阳黎明著,国防工

9、业出版社三、用Matlab绘制根轨迹7/29/202430num=0001;%开环传递函数分子系数,降幂排列den=1320;%开环传递函数分母系数,降幂排列r=rlocus(num,den);例子系统的开环传递函数为:,试利用Matlab画出系统的根轨迹。解打开Matlab,创建一个m文件,输入下列程序片段:执行之,可得到根轨迹。7/29/202431例4-13已知系统开环传递函数为(1)画出系统的根轨迹;(2)计算使系统稳定的k值范围;(3)计算系统对于斜坡输入的稳态误差。解:(1)画根轨迹:7/29/202432q求出射角:,得。该系统有三条根轨迹,一条从原点起始,终止于开环零点-1处;

10、另两条从原点以的出射角起始,分别终止于-3和无穷零点处。q会合分离点:由方程得解得在根轨迹上,因此是会合点。不在根轨迹上,舍去。7/29/202433q求与虚轴交点系统特征方程为劳斯表为当时,由辅助方程,可求出根轨迹与虚轴的交点为。(2)由劳斯表可知当时,系统稳定。(3)系统含有三个积分环节,属型系统,型系统对于斜坡输入的稳态误差为零。7/29/202434q 画根轨迹分离(会合)点分别为-2.93和-17.07,分离(会合)角为90度。根轨迹为圆,如右图所示。例4-14已知单位反馈系统的开环传递函数为(1)画出系统的根轨迹;(2)计算当增益k为何值时,系统的阻尼比是,并求此时系统的闭环特征根

11、;(3)分析k对系统性能的影响,并求系统最小阻尼比所对应的闭环极点。7/29/202435q当时,阻尼角,表示角的直线为OB,其方程为,代入特征方程整理后得:令实部和虚部分别为零,有解得由图可知当 时直线OB与圆相切,系统的阻尼比 ,特征根为 。7/29/202436q对于分离点,由幅值条件可知对于会合点,有由根轨迹图可知,当时,闭环系统有一对不等的负实数极点,其瞬态响应呈过阻尼状态。当时,闭环系统有一对共轭复数极点,其瞬态响应呈欠阻尼状态。当 时,闭环系统又有一对不等的负实数极点,瞬态响应又呈过阻尼状态。7/29/202437q由坐标原点作根轨迹圆的切线,此切线就是直线OB,直线OB与负实轴

12、夹角的余弦就是系统的最小阻尼比,由上可知,此时系统的闭环极点为。7/29/202438例4-15:设系统A和B有相同的被控对象,且有相同的根轨迹,如下图所示。已知系统A有一个闭环零点,系统B没有闭环零点。试求系统A和B的开环传递函数和它们所对应的闭环方块图。7/29/202439系统A和B的闭环传递函数分别为:解:由于两系统的根轨迹完全相同,因而它们对应的开环传递函数和闭环特征方程式也完全相同。由上页图可知系统A和B的开环传递函数为:特征方程为:7/29/202440由此可知,系统A是一单位反馈系统,前向通路的传递函数为:。系统B的前向通路传递函数为:,反馈通路传递函数为:。由于系统A和B有相

13、同的被控对象,因此,系统的A的前向通路传递函数可写为:,闭环方块图如下图(a)所示,系统B的闭环方块图如下图(b)所示。图(a)A系统图(b)B系统根轨迹相同的系统,开环传递函数和闭环极点都相同,但闭环零点却不一定相同。7/29/202441例4-16:已知单位反馈系统的根轨迹如下图所示。(1)写出该系统的闭环传递函数;(2)试用适当的方法使系统在任意K值时均处于稳定的状态。7/29/202442解:由根轨迹图知系统的开环传递函数为:单位反馈系统的闭环传递函数为:提示:加入比例微分控制后,系统增加了开环零点。在系统中加入零点后,将使根轨迹左移,有利于系统的稳定性。当在系统中加入比例微分控制时,

14、开环传递函数增加了一个零点,此时:这时渐近线与实轴的夹角为:,只要渐近线与负实轴相交,系统的根轨迹就在左半S平面。因此有:,所以。7/29/202443从下图可以看出:a越小,根轨迹越左,稳定性越好。a6时,根轨迹有一部分在s右半平面。clearall;num1=0013;den1=1600;num2=0015;den2=1600;num3=0017;den3=1600;h1=tf(num1,den1);h2=tf(num2,den2);h3=tf(num3,den3);rlocus(h1,h2,h3)作业:4-7,4-10,4-117/29/202444小结q 条件稳定系统的分析临界稳定增益的确定;q 瞬态性能分析和开环系统参数的确定 阻尼角和等阻尼线; 超调量、调整时间与闭环极点的关系;根据性能指标确定二阶及高阶系统的开环放大系数;开环零、极点对根轨迹形状的影响。q用Matlab绘制根轨迹的方法7/29/202445

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 研究生课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号