《算法设计与分析》PPT课件

上传人:m**** 文档编号:569375959 上传时间:2024-07-29 格式:PPT 页数:37 大小:430.97KB
返回 下载 相关 举报
《算法设计与分析》PPT课件_第1页
第1页 / 共37页
《算法设计与分析》PPT课件_第2页
第2页 / 共37页
《算法设计与分析》PPT课件_第3页
第3页 / 共37页
《算法设计与分析》PPT课件_第4页
第4页 / 共37页
《算法设计与分析》PPT课件_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《《算法设计与分析》PPT课件》由会员分享,可在线阅读,更多相关《《算法设计与分析》PPT课件(37页珍藏版)》请在金锄头文库上搜索。

1、算法设计与分析山东师范大学信息科学与工程学院软件工程研究所徐连诚 E-Mail:2006年10月30日第四章 贪心算法本章主要知识点(8):4.1 活动安排问题4.2 贪心算法的基本要素4.3 最优装载4.4 哈夫曼编码4.5 单源最短路径4.6 最小生成树4.7 多机调度问题4.8 贪心算法的理论基础2 2引言找零钱问题顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最

2、小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。3 34.1 活动安排问题活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。该问题要求高效地安排一系列争用某一公共资源的活动。贪心算法提供了一个简单、漂亮的方法使得尽可能多的活动能兼容地使用公共资源。设有n个活动的集合E=1,2,n,其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si fi 。如果选择了活动i,则它在半开时间区间si, fi)内占

3、用资源。若区间si, fi)与区间sj, fj)不相交,则称活动i与活动j是相容的。也就是说,当sifj或sjfi时,活动i与活动j相容。4 4贪心算法描述在下面所给出的解活动安排问题的贪心算法greedySelector :public static int greedySelector(int s, int f, boolean a)int n=s.length-1;a1=true;int j=1;int count=1;for (int i=2;i=fj) ai=true;j=i;count+;else ai=false;return count;各活动的起始时间和结束时间存储于数组s和

4、f中且按结束时间的非减序排列 5 5复杂性分析由于输入的活动以其完成时间的非减序排列,所以算法greedySelector每次总是选择具有最早完成时间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。算法greedySelector的效率极高。当输入的活动已按结束时间的非减序排列,算法只需O(n)的时间安排n个活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)的时间重排。6 6一个实例例:设待安排的11个活动的开始时间和结束时

5、间按结束时间的非减序排列如下:i12345678910 11Si130535688212fi45678910 11 12 13 147 7图示算法greedySelector 的计算过程如右图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。8 8说明若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。贪心算法并不总能求得问题的整体最优解。但对于活动安排问题,贪心算法greedySelector却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个

6、结论可以用数学归纳法证明。9 94.2 贪心算法的基本要素本节着重讨论可以用贪心算法求解的问题的一般特征。对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质和最优子结构性质。10101.贪心选择性质所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作

7、出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。11112.最优子结构性质当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。12123.贪心算法与动态规划算法的差异贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。但是,对于具有最优子结构的问题应该选用贪心算法还是动态规划算法求解?是否能用动态规划算法求解的问题也能用贪心算法求解?下面研究2个经典的组合优化

8、问题,并以此说明贪心算法与动态规划算法的主要差别。0-1背包问题背包问题13130-1背包问题与背包问题0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。背包问题:与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1in。这2类问题都具有最优子结构性质,极为相似,但背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心

9、算法求解。 1414用贪心算法解背包问题的基本步骤首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。具体算法可描述如下:void Knapsack(int n,float M,float v,float w,float x)Sort(n,v,w);int i;for (i=1;i=n;i+) xi=0;float c=M;for (i=1;ic) break;xi=1;c-=wi;if (i

10、102030501.¥60 2.¥100 3.¥120 4.背包 =¥220=¥160=¥180=¥2401002012030601010020601012030601010020802012020300-1背包问题的例子说明16164.3 最优装载有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为Wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。改问题可形式化描述为其中变量xi=0表示不装入集装箱i,xi=1表示装入集装箱i。17171.算法描述最优装载问题可用贪心算法求解。采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解。具体算法描述如

11、下: templatevoid Loading(int x, Type w, Type c, int n)int *t = new int n+1;Sort(w, t, n);for (int i = 1; i = n; i+) xi = 0;for (int i = 1; i = n & wti m时,首先将n个作业依其所需的处理时间从大到小排序。然后依此顺序将作业分配给空闲的处理机。算法所需的计算时间为O(nlogn)。3535一个实例例如,设7个独立作业1,2,3,4,5,6,7由3台机器M1,M2和M3加工处理。各作业所需的处理时间分别为2,14,4,16,6,5,3。按算法greedy产生的作业调度如下图所示,所需的加工时间为17。36364.8 贪心算法的理论基础略3737

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 研究生课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号