最新微波电子线路第三章上PPT课件

上传人:cn****1 文档编号:569360192 上传时间:2024-07-29 格式:PPT 页数:37 大小:1.07MB
返回 下载 相关 举报
最新微波电子线路第三章上PPT课件_第1页
第1页 / 共37页
最新微波电子线路第三章上PPT课件_第2页
第2页 / 共37页
最新微波电子线路第三章上PPT课件_第3页
第3页 / 共37页
最新微波电子线路第三章上PPT课件_第4页
第4页 / 共37页
最新微波电子线路第三章上PPT课件_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《最新微波电子线路第三章上PPT课件》由会员分享,可在线阅读,更多相关《最新微波电子线路第三章上PPT课件(37页珍藏版)》请在金锄头文库上搜索。

1、微波电子线路第三章上微波电子线路第三章上2固态电路中,采用的非线性元件一般是固态电路中,采用的非线性元件一般是半导体二极管半导体二极管: : 非线性电阻二极管非线性电阻二极管 肖特基势垒二极管肖特基势垒二极管 非线性电容二极管非线性电容二极管 变容管、阶跃恢复二极管等变容管、阶跃恢复二极管等 频谱搬移过程主要由非线性电阻完成、即核心元件是非线频谱搬移过程主要由非线性电阻完成、即核心元件是非线性电阻的频率变换器称为性电阻的频率变换器称为“阻性变频器阻性变频器” 频谱搬移过程主要由非线性电抗完成、即核心元件是非线频谱搬移过程主要由非线性电抗完成、即核心元件是非线性电容的频率变换器称为性电容的频率变

2、换器称为“参量变频器参量变频器”。 频率变换器按照功能还可进一步划分为:频率变换器按照功能还可进一步划分为: 下变频器、上变频器和倍频器下变频器、上变频器和倍频器微波频率变换器3.1 3.1 概述概述 3456789微波频率变换器 根据第二章第二节混频二极管的交流激励特性可知根据第二章第二节混频二极管的交流激励特性可知(忽略反向饱和电流):(忽略反向饱和电流): (本振电流)(本振电流) (信号基波电流)(信号基波电流) (输出中频电流)(输出中频电流) 10微波频率变换器(高次差频电流)(高次差频电流) (各次和频电流)(各次和频电流) 混频电流的主要频谱混频电流的主要频谱 频率称为和频,频

3、率称为和频, 除称为中频外还称为差除称为中频外还称为差频,频, 称为镜像频率。称为镜像频率。 11微波频率变换器得出以下基本结论得出以下基本结论: : 在非线性电阻混频过程中产生了无数的组合分量,其中包在非线性电阻混频过程中产生了无数的组合分量,其中包 含有中频分量,能够实现混频功能。可用中频带通滤波器含有中频分量,能够实现混频功能。可用中频带通滤波器 取出所需的中频分量而将其它组合频率滤掉。取出所需的中频分量而将其它组合频率滤掉。 中频电流的振幅为中频电流的振幅为 . .它与输入信号振幅成正比它与输入信号振幅成正比 例。混频器输入端与输出端分量振幅之间具有线性关系例。混频器输入端与输出端分量

4、振幅之间具有线性关系, , 这一点对信号接收时的保真无疑是非常有意义的。这一点对信号接收时的保真无疑是非常有意义的。 由于本振信号是强信号,在混频过程中它通过二极管的非由于本振信号是强信号,在混频过程中它通过二极管的非 线性作用而产生了无数的谐波,每一个谐波都包含了部分线性作用而产生了无数的谐波,每一个谐波都包含了部分 有用的信号功率,是对信号功率的浪费,应该采取措施加有用的信号功率,是对信号功率的浪费,应该采取措施加 以回收利用,以提高从信号变换为中频的变换效率。但各以回收利用,以提高从信号变换为中频的变换效率。但各 谐波功率大约随谐波功率大约随 变化,因此混频产物电路的组合分量变化,因此混

5、频产物电路的组合分量 强度随增加而很快减小。通常只有本振基波和二次谐波强度随增加而很快减小。通常只有本振基波和二次谐波 等分量才足够强,对混频变换效率产生较大影响。等分量才足够强,对混频变换效率产生较大影响。 12微波频率变换器(2 2)大信号情况)大信号情况 如果混频器的输入信号是强信号(但可认为信号电压幅度仍如果混频器的输入信号是强信号(但可认为信号电压幅度仍远小于本振电压幅度),不能忽略远小于本振电压幅度),不能忽略 以上的各高次项。此时信号以上的各高次项。此时信号也将产生各次谐波,混频产物电流的频谱分量将大为增加。也将产生各次谐波,混频产物电流的频谱分量将大为增加。 为使问题分析及表达

6、简洁,可以借助欧拉公式把上述各三角为使问题分析及表达简洁,可以借助欧拉公式把上述各三角函数表示为指数形式函数表示为指数形式: : 如果定义如果定义 ,则有:,则有: 从而,傅立叶展开的从而,傅立叶展开的g(t)g(t)可以写为:可以写为: 13微波频率变换器信号电压及其各次幂同样可以写成:信号电压及其各次幂同样可以写成: 表示为:表示为: 混频输出电流的一般表达式混频输出电流的一般表达式 14微波频率变换器大信号下混频的基本结论:大信号下混频的基本结论: 在非线性电阻混频过程中产生了信号和本振所有可能的各次在非线性电阻混频过程中产生了信号和本振所有可能的各次 谐波组合分量,比小信号时丰富得多。

7、其中包含有中频分量,谐波组合分量,比小信号时丰富得多。其中包含有中频分量, 能够实现混频功能。可用中频带通滤波器取出所需的中频分能够实现混频功能。可用中频带通滤波器取出所需的中频分 量而将其它组合频率滤掉。量而将其它组合频率滤掉。 二极管电流中包含中频分量为:二极管电流中包含中频分量为: 其振幅可计算出为:其振幅可计算出为: 中频电流振幅不再与输入信号振幅成线性关系,将产生非线中频电流振幅不再与输入信号振幅成线性关系,将产生非线性失真。性失真。 由于信号也产生各次谐波,将有可能在输出端产生组合干扰。由于信号也产生各次谐波,将有可能在输出端产生组合干扰。15微波频率变换器3.2.2 3.2.2

8、电路功率关系与变频损耗电路功率关系与变频损耗 混频器的变频损耗混频器的变频损耗 一般可定义为:一般可定义为: 它表示混频器中任意边带频率它表示混频器中任意边带频率 到另一边带频率到另一边带频率 之间的之间的变频损耗,变频损耗, 和和 分别表示这两个频率上的资用功率。分别表示这两个频率上的资用功率。 由于一般只关注输出中频的情况,可把混频器的变频损耗由于一般只关注输出中频的情况,可把混频器的变频损耗定义限定为:定义限定为: 和和 分别为从信号源和中频输出端分别为从信号源和中频输出端得到的资用功率。得到的资用功率。 1 1混频器的功率关系混频器的功率关系 二极管这一非线性电阻中的瞬时功率可表示为:

9、二极管这一非线性电阻中的瞬时功率可表示为: 16微波频率变换器平均功率一般可表示为:平均功率一般可表示为: 当当 时,积分项为时,积分项为1 1,当,当 时,积分项为时,积分项为0 0对于阻性二极管来说,对于阻性二极管来说, 是时间的实函数,而且对所有的时是时间的实函数,而且对所有的时间来说间来说 ,则可见,则可见 为实数,而且恒有为实数,而且恒有 。 考虑到只有信号源对时变电阻考虑到只有信号源对时变电阻 馈给功率,故馈给功率,故 (信号频率上(信号频率上进入的功率)是正的,而在其它频率进入的功率)是正的,而在其它频率 ( )上均吸收功率,)上均吸收功率,因而它们的功率因而它们的功率 均为负值

10、。均为负值。17微波频率变换器 可得出结论:对于非负的时变电阻可得出结论:对于非负的时变电阻 和时变电导和时变电导 来说,来说,混频器中所有混频产物所得到的总功率不大于信号源所供给的混频器中所有混频产物所得到的总功率不大于信号源所供给的信号功率。信号功率。 变频损耗不可能小于变频损耗不可能小于1 1,即不可能有变频增益,因而我们所,即不可能有变频增益,因而我们所讨论的线性周期时变电阻网络是无源的。由于其无源性,因而讨论的线性周期时变电阻网络是无源的。由于其无源性,因而它是绝对稳定的,即在任何终端负载和本振条件下都不会产生它是绝对稳定的,即在任何终端负载和本振条件下都不会产生自激振荡。自激振荡。

11、 在无穷多个混频产物频率中,我们一般仅需要输出一种频在无穷多个混频产物频率中,我们一般仅需要输出一种频率成分,即中频。那些不需要输出的混频产物(称为带外闲频)率成分,即中频。那些不需要输出的混频产物(称为带外闲频)在相应频率的端口阻抗上造成功率损耗,如果能使混频器对这些在相应频率的端口阻抗上造成功率损耗,如果能使混频器对这些无用边带频率造成特殊的终端条件,则可减少有用功率的浪费,无用边带频率造成特殊的终端条件,则可减少有用功率的浪费,减小变频损耗。减小变频损耗。 相当于在频率为相当于在频率为 的端口上分别具有短路、开路和电抗终端的端口上分别具有短路、开路和电抗终端 18微波频率变换器2 2Y

12、Y混频器及其变频损耗混频器及其变频损耗 在各种减小变频损耗的措施中,如果采取的是对所有带外在各种减小变频损耗的措施中,如果采取的是对所有带外闲频闲频 ( )提供短路终端,构成的混频器称为)提供短路终端,构成的混频器称为Y Y混频器。混频器。Y Y混频器电路原理图混频器电路原理图 所有带外闲频所有带外闲频 ( )都是严重失谐而呈现近似都是严重失谐而呈现近似短路的终端阻抗。短路的终端阻抗。相当于前面线性分析中加在混频相当于前面线性分析中加在混频二极管上的电压只有三个:信号二极管上的电压只有三个:信号电压、镜频电压和中频电压,因电压、镜频电压和中频电压,因此混频器是三端口网络。此混频器是三端口网络。

13、19微波频率变换器Y Y混频器的电路方程表示为:混频器的电路方程表示为: 或或 由于由于 表示时变电导表示时变电导 各分量的复振幅,表示导纳,因而各分量的复振幅,表示导纳,因而 矩阵矩阵是是Y Y矩阵(导纳矩阵),故把这种混频器称为矩阵(导纳矩阵),故把这种混频器称为Y Y混频器。混频器。 以以Y Y混频器为例来具体分析变频损耗。假设本振电压的初相混频器为例来具体分析变频损耗。假设本振电压的初相 Y Y混频器的矩阵方程式为:混频器的矩阵方程式为: 20微波频率变换器 由于由于Y Y混频器除信号端口和中频端口之外,还有一个镜频端口。混频器除信号端口和中频端口之外,还有一个镜频端口。混频产生的镜像

14、频率同样包含有信号的有用功率,也会造成变频损混频产生的镜像频率同样包含有信号的有用功率,也会造成变频损耗的降低,因此必须对镜频端口进一步施加特殊的终端条件,以利耗的降低,因此必须对镜频端口进一步施加特殊的终端条件,以利于回收镜像频率混频产物中包含的有用信号功率,进一步降低变频于回收镜像频率混频产物中包含的有用信号功率,进一步降低变频损耗。损耗。 Y Y混频器按照对于镜频端口采取措施与否及采取措施的不同,混频器按照对于镜频端口采取措施与否及采取措施的不同,又可以分为三种类型:又可以分为三种类型:镜像匹配、镜像短路和镜像开路镜像匹配、镜像短路和镜像开路,这三种镜,这三种镜像终端由于终端条件不同会有

15、不同的变频损耗性能,为获得最佳变像终端由于终端条件不同会有不同的变频损耗性能,为获得最佳变频损耗,对信号源电阻和负载电阻的要求也不同。频损耗,对信号源电阻和负载电阻的要求也不同。 (1 1)镜像匹配情况)镜像匹配情况 镜频距离信号频率仅有二倍中频镜频距离信号频率仅有二倍中频 从二极管向外电路看去,信号输入回路对镜频的阻抗与对信号频率的阻从二极管向外电路看去,信号输入回路对镜频的阻抗与对信号频率的阻抗近似相等,这种混频器称为抗近似相等,这种混频器称为“镜像匹配混频器镜像匹配混频器”。 21微波频率变换器输出电导输出电导 一般混频器等效电路一般混频器等效电路 变频损耗变频损耗 最佳变频损耗最佳变频

16、损耗 与最佳信号源电导与最佳信号源电导 及输出电导及输出电导 当当 时,时, ,这意味着在极限本振激励,这意味着在极限本振激励下,信号输入功率仅有一半变换为有用的中频功率,而另一半下,信号输入功率仅有一半变换为有用的中频功率,而另一半会变成镜像功率在信号源内导上消耗掉。会变成镜像功率在信号源内导上消耗掉。 22微波频率变换器变频损耗与本振电压和变频损耗与本振电压和镜像终端类型的关系镜像终端类型的关系 归一化最佳电导与本振电压和归一化最佳电导与本振电压和镜像终端类型的关系镜像终端类型的关系 23微波频率变换器(2 2)镜像短路情况)镜像短路情况 如果信号和本振输入回路如果信号和本振输入回路 和和

17、 都是窄带的,对镜像都是窄带的,对镜像频率它们具有很低的阻抗,可以使得镜像电压频率它们具有很低的阻抗,可以使得镜像电压 但镜像电流但镜像电流 ,就会出现,就会出现“镜像短路镜像短路”情况。情况。 加有镜像短路滤波器的混频器加有镜像短路滤波器的混频器 在实际电路中,一般是采用在实际电路中,一般是采用“嵌入嵌入”镜像滤波器的办法来镜像滤波器的办法来构造镜像短路构造镜像短路,这种电路不,这种电路不要求输入回路具有能区分信要求输入回路具有能区分信号频率和镜像频率的窄带特号频率和镜像频率的窄带特性,镜像短路由专门的结构性,镜像短路由专门的结构来实现。来实现。 电路在二极管输入口并联一个窄电路在二极管输入

18、口并联一个窄带的串联谐振回路,谐振于镜像带的串联谐振回路,谐振于镜像频率,根据串联谐振的特性,该回路对镜像频率提供近似短路的频率,根据串联谐振的特性,该回路对镜像频率提供近似短路的低阻抗,但对信号频率提供高阻抗,因此该回路对信号功率损耗很小低阻抗,但对信号频率提供高阻抗,因此该回路对信号功率损耗很小24微波频率变换器 当当 时,时, ,这是因为在镜像短路情况下,这是因为在镜像短路情况下,包括镜频在内的所有高次闲频分量均被短路而没有功率损耗,包括镜频在内的所有高次闲频分量均被短路而没有功率损耗,故在极限本振激励下,所有信号输入功率都可变成中频功率。故在极限本振激励下,所有信号输入功率都可变成中频

19、功率。当然,实际混频器本振激励是有限的,变频损耗总是大于当然,实际混频器本振激励是有限的,变频损耗总是大于1 1,是,是有耗的。有耗的。 (3 3)镜像开路情况)镜像开路情况 如果在混频器输入端与二极管之间嵌入一个镜像频率的并如果在混频器输入端与二极管之间嵌入一个镜像频率的并联谐振回路,它将在镜像频率上呈现高阻抗,使得镜像电压联谐振回路,它将在镜像频率上呈现高阻抗,使得镜像电压 但镜像电流但镜像电流 ,就会出现,就会出现“镜像开路镜像开路”情况。情况。 在镜频谐振回路两端的镜像电压将又加在二极管上,并与本在镜频谐振回路两端的镜像电压将又加在二极管上,并与本振再次混频产生中频,又得到有用的中频能

20、量。因此,这里镜振再次混频产生中频,又得到有用的中频能量。因此,这里镜像频率的并联谐振回路相当于镜频的能量存储器,并最终把镜像频率的并联谐振回路相当于镜频的能量存储器,并最终把镜频能量再转化为中频能量频能量再转化为中频能量. . 25微波频率变换器加有镜像开路滤波器的混频器加有镜像开路滤波器的混频器 当当 时时, , 综合三种类型镜像终综合三种类型镜像终端端Y Y混频器的性能,可以混频器的性能,可以得出一些重要结论:得出一些重要结论: 在同样的本振激励功率下,在同样的本振激励功率下, 镜像开路的变频损耗最小,镜像开路的变频损耗最小, 而镜像匹配的损耗最大。镜像开路混频器所要求的最佳信号源而镜像

21、匹配的损耗最大。镜像开路混频器所要求的最佳信号源 电导比镜像短路混频器的小的多,如果给定的信号源电阻较低电导比镜像短路混频器的小的多,如果给定的信号源电阻较低 (约几十欧),那么镜像短路混频器比较容易与信号源匹配,(约几十欧),那么镜像短路混频器比较容易与信号源匹配, 实际上所得性能并不比镜像开路混频器差。实际上所得性能并不比镜像开路混频器差。 镜像匹配混频器是宽带混频器,它具有存在于本振频率两侧的镜像匹配混频器是宽带混频器,它具有存在于本振频率两侧的 信号及镜频通道,是双通道混频器,如果在信号输入端存在一信号及镜频通道,是双通道混频器,如果在信号输入端存在一 个频率等于镜像频率的外来干扰信号

22、,能够在中频输出端造成个频率等于镜像频率的外来干扰信号,能够在中频输出端造成 中频干扰,使混频器性能变坏。中频干扰,使混频器性能变坏。 26微波频率变换器 镜像短路与开路混频器是窄带混频器,只在本振频率一侧存在镜像短路与开路混频器是窄带混频器,只在本振频率一侧存在 信号通道,是单通道混频器,如果在信号输入端存在一个频率信号通道,是单通道混频器,如果在信号输入端存在一个频率 等于镜像频率的外来干扰信号,它也会被输入回路中的镜像抑等于镜像频率的外来干扰信号,它也会被输入回路中的镜像抑 制滤波器(短路或开路)所抑制,不能通过混频器产生输出。制滤波器(短路或开路)所抑制,不能通过混频器产生输出。 常用

23、镜像匹配混频器来接收宽带信号或调制产生的双边带信号,常用镜像匹配混频器来接收宽带信号或调制产生的双边带信号, 这时虽然每个通道的变频损耗较大,但中频功率可以是两个通这时虽然每个通道的变频损耗较大,但中频功率可以是两个通 道之和,这样总变频损耗并不会恶化太多;而用镜像开路或短道之和,这样总变频损耗并不会恶化太多;而用镜像开路或短 路混频器来接收窄带或单边带信号。如果必须用镜像匹配混频路混频器来接收窄带或单边带信号。如果必须用镜像匹配混频 器来接收窄带信号,就必须尽可能器来接收窄带信号,就必须尽可能“抑制抑制”或或“关闭关闭”镜像通道以镜像通道以 减小中频干扰。减小中频干扰。 混频器对本振源的输入

24、电导混频器对本振源的输入电导 与混频器最佳信号源电导与混频器最佳信号源电导 数数 值相近,即混频器与本振源电导值相近,即混频器与本振源电导 匹配得到的性能与最佳性能匹配得到的性能与最佳性能 相近。因此实际设计宽带混频器时,常用相近。因此实际设计宽带混频器时,常用 来估计来估计 ,这给,这给 宽带混频器的设计提供了基础和方便。宽带混频器的设计提供了基础和方便。 27微波频率变换器3.2.3 3.2.3 噪声特性噪声特性 混频器的噪声特性主要用混频器的噪声特性主要用“噪声系数噪声系数”和和“噪声比噪声比”来描述。来描述。针对混频器输出的核心变频产物针对混频器输出的核心变频产物- -中频,混频器的噪

25、声系数可中频,混频器的噪声系数可定义为:定义为: 为混频器的变频损耗为混频器的变频损耗; ; 分别为混频器输入和输出的噪声资用功率。分别为混频器输入和输出的噪声资用功率。 一般把混频器的总输出噪声等效为温度一般把混频器的总输出噪声等效为温度 的电阻所产生的热噪声,的电阻所产生的热噪声,称为混频器的等效噪声温度,并可定义混频器的噪声比称为混频器的等效噪声温度,并可定义混频器的噪声比 为:为: 为标准噪声温度,一般取常温为标准噪声温度,一般取常温290K290K。 28微波频率变换器 混频器的噪声系数及噪声比与混频器的电路结构(单或双通混频器的噪声系数及噪声比与混频器的电路结构(单或双通道)及信号

26、频谱宽度(单或双边带)有关。道)及信号频谱宽度(单或双边带)有关。 1 1镜像开路和短路混频器的噪声系数镜像开路和短路混频器的噪声系数 这时混频器是单通道的,它是二端口有耗网络,其噪声等这时混频器是单通道的,它是二端口有耗网络,其噪声等效电路为:效电路为: 混频器的输出噪声由混频器的输出噪声由两部分构成:两部分构成:一部分一部分是输入噪声经过混频是输入噪声经过混频器衰减后的噪声输出器衰减后的噪声输出功率,另一部分是混频器内部噪声产生的输出功率。功率,另一部分是混频器内部噪声产生的输出功率。 下标下标“1”“1”表示单通道混频器。将噪声系数用变频损耗和噪声表示单通道混频器。将噪声系数用变频损耗和

27、噪声比表示,可得:比表示,可得: 混频器的噪声系数近似等于变频损耗,要获得低噪声系数,混频器的噪声系数近似等于变频损耗,要获得低噪声系数,必须使混频器的变频损耗尽可能低,两者是一致的。必须使混频器的变频损耗尽可能低,两者是一致的。 29微波频率变换器2 2镜像匹配混频器的噪声系数镜像匹配混频器的噪声系数 这时混频器是双通道的,它是三端口有耗网络。对于这种双通道这时混频器是双通道的,它是三端口有耗网络。对于这种双通道混频器,当信号的边带结构不同时,如单边带(混频器,当信号的边带结构不同时,如单边带(SSBSSB)信号或双边)信号或双边带(带(DSBDSB)信号,其噪声系数及噪声比是不同的,必须分

28、别讨论。)信号,其噪声系数及噪声比是不同的,必须分别讨论。 (1 1)单边带信号情况)单边带信号情况 这时信号功率仅存在于信号通道,这时信号功率仅存在于信号通道,镜像通道没有信号,但由于镜像镜像通道没有信号,但由于镜像通道也存在热噪声,因此将会有通道也存在热噪声,因此将会有两个通道的噪声通过混频产生中两个通道的噪声通过混频产生中频噪声输出,其噪声性能将变坏。频噪声输出,其噪声性能将变坏。 这时噪声系数和噪声比为:这时噪声系数和噪声比为: 30微波频率变换器(2 2)双边带信号情况)双边带信号情况 信号和镜像通道都存在信号功率,因此输出中频功率信号和镜像通道都存在信号功率,因此输出中频功率 ,而

29、输出的总中频噪声资用功率仍为,而输出的总中频噪声资用功率仍为 ,故输出中频的信噪比比单边带信号情况增加一倍;,故输出中频的信噪比比单边带信号情况增加一倍;而输入信噪比这时并没有改变。噪声系数为而输入信噪比这时并没有改变。噪声系数为: : 如果用双通道混频器来接收如果用双通道混频器来接收“单边带单边带”信号时,由于噪声信号时,由于噪声输出是双通道的,而信号是单通道的,噪声系数要增大一倍,输出是双通道的,而信号是单通道的,噪声系数要增大一倍,或者说输出信噪比变坏或者说输出信噪比变坏3dB3dB。为了降低混频器的噪声系数以改。为了降低混频器的噪声系数以改善灵敏度,应将镜像通道抑制,这样对信号传输无影

30、响,但善灵敏度,应将镜像通道抑制,这样对信号传输无影响,但可将噪声削弱可将噪声削弱3dB3dB。 31微波频率变换器3 3混频器混频器- -中放组件的噪声系数中放组件的噪声系数 在外差式微波接收机中,一般采用混频器在外差式微波接收机中,一般采用混频器- -中频放大器组件作中频放大器组件作为接收前端。由于阻性混频器本身没有增益,其后面中频放大器的为接收前端。由于阻性混频器本身没有增益,其后面中频放大器的噪声影响不能忽略。因此,以混频器作前端器件的整机噪声系数取噪声影响不能忽略。因此,以混频器作前端器件的整机噪声系数取决于混频器决于混频器- -中放组件的总和噪声系数。中放组件的总和噪声系数。 总噪

31、声系数总噪声系数 对于单通道混频器,因对于单通道混频器,因 若若 ,可得:,可得: 对于双通道混频器接收单边带信号情况对于双通道混频器接收单边带信号情况: : 对于双通道混频器接收双边带信号情况对于双通道混频器接收双边带信号情况: : 32微波频率变换器由于理论上由于理论上 ,因此理想的镜像短路(开路)混频器及,因此理想的镜像短路(开路)混频器及低噪声中放应获得较小的整机噪声系数。低噪声中放应获得较小的整机噪声系数。 从以上的分析可见,要获得低噪声,必须降低变频损耗、从以上的分析可见,要获得低噪声,必须降低变频损耗、二极管的噪声比以及中频放大器的噪声系数。在一定的噪声二极管的噪声比以及中频放大

32、器的噪声系数。在一定的噪声比和中频放大器的噪声系数下,降低是获得低噪声系数的关比和中频放大器的噪声系数下,降低是获得低噪声系数的关键。因此低噪声混频器必须具有低损耗。键。因此低噪声混频器必须具有低损耗。 4 4本振源引入的噪声本振源引入的噪声 在计算噪声系数和噪声比时,除混频二极管本身产生噪声在计算噪声系数和噪声比时,除混频二极管本身产生噪声外,仅考虑了信号源部分的噪声输入在中频端造成的噪声输出。外,仅考虑了信号源部分的噪声输入在中频端造成的噪声输出。实际上,本阵源也会有噪声,并会将其噪声引入混频过程,对实际上,本阵源也会有噪声,并会将其噪声引入混频过程,对混频造成影响。混频造成影响。 由于本

33、振源谐振滤波器的作用,噪声频谱包络与谐振器的由于本振源谐振滤波器的作用,噪声频谱包络与谐振器的频率特性相同。频率特性相同。 33微波频率变换器本振源输出噪声频谱本振源输出噪声频谱 本振源有效噪声频谱本振源有效噪声频谱 在微波波段,噪声系数增加大约在微波波段,噪声系数增加大约2 23dB3dB,这是一个可观的数值,这是一个可观的数值,因此在电路设计中必须尽可能采取措施消去本振噪声的影响。因此在电路设计中必须尽可能采取措施消去本振噪声的影响。 34微波频率变换器3.2.4 3.2.4 混频器的其它电气指标混频器的其它电气指标 如果信号端口与本振端口的隔离较差,将会发生信号能量泄漏如果信号端口与本振

34、端口的隔离较差,将会发生信号能量泄漏到本振端口,造成能量损失,以及本振能量泄漏到信号端口,造成到本振端口,造成能量损失,以及本振能量泄漏到信号端口,造成信号源的不稳定及向外辐射能量,因此要求信号端与本振端之间保信号源的不稳定及向外辐射能量,因此要求信号端与本振端之间保证一定的隔离度。证一定的隔离度。 1 1信号端口与本振端口的隔离度信号端口与本振端口的隔离度 用用 表示输入信号功率,表示输入信号功率, 表示信号泄漏到本振端口的功率,表示信号泄漏到本振端口的功率,则隔离度定义为:则隔离度定义为: 用用 表示输入本振功率,表示输入本振功率, 表示本振泄漏到信号端口的功率,表示本振泄漏到信号端口的功

35、率,则隔离度定义为:则隔离度定义为: 根据互易原理,根据互易原理, 。 35 混频器输入端反射不仅导致失配损耗,而且当混频器为接收混频器输入端反射不仅导致失配损耗,而且当混频器为接收机前置级时,由于反射信号在天线与接收机之间来回传输,使输机前置级时,由于反射信号在天线与接收机之间来回传输,使输入端信号产生相位失真。在某些相位关系要求严格的系统里,对入端信号产生相位失真。在某些相位关系要求严格的系统里,对输入驻波比有特别严格的要求,在一般情况下,要求输入驻波比输入驻波比有特别严格的要求,在一般情况下,要求输入驻波比小于小于2 2。 2 2输入驻波比输入驻波比 微波频率变换器3 3动态范围动态范围

36、 混频器的动态范围指能够使混频器有效工作的输入电平范围。混频器的动态范围指能够使混频器有效工作的输入电平范围。 36微波频率变换器 频带宽度是指满足各项指标的混频器工作频率范围,它主要取频带宽度是指满足各项指标的混频器工作频率范围,它主要取决于二极管的寄生参量及组成电路各元件的频带宽度。决于二极管的寄生参量及组成电路各元件的频带宽度。 4 4频带宽度频带宽度 可见当输入电平较低时,输入功率与输出中频功率成线性关可见当输入电平较低时,输入功率与输出中频功率成线性关系,变频损耗也是常数;当输入功率增加到一定电平时,由系,变频损耗也是常数;当输入功率增加到一定电平时,由于大信号作用,寄生频率增多,使变频损耗增加。可定义变频于大信号作用,寄生频率增多,使变频损耗增加。可定义变频损耗相对于低电平恒定值增大损耗相对于低电平恒定值增大1dB1dB时的输入电平为时的输入电平为“1dB“1dB压缩点压缩点”。结束语结束语谢谢大家聆听!谢谢大家聆听!37

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号