电力电子器件晶闸管课件

上传人:人*** 文档编号:568455347 上传时间:2024-07-24 格式:PPT 页数:26 大小:439KB
返回 下载 相关 举报
电力电子器件晶闸管课件_第1页
第1页 / 共26页
电力电子器件晶闸管课件_第2页
第2页 / 共26页
电力电子器件晶闸管课件_第3页
第3页 / 共26页
电力电子器件晶闸管课件_第4页
第4页 / 共26页
电力电子器件晶闸管课件_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《电力电子器件晶闸管课件》由会员分享,可在线阅读,更多相关《电力电子器件晶闸管课件(26页珍藏版)》请在金锄头文库上搜索。

1、1 1)概念)概念: :电力电子器件电力电子器件(Power Electronic Device) 可直接用于主电路中,实现电能的变换或控制的电子器件。主电路(主电路(Main Power Circuit) 电气设备或电力系统中,直接承担电能的变换或控制任务的电路。4.1 电力电子器件的概念电力电子器件电力电子器件电力电子器件晶闸管课件能处理电功率的能力,一般远大于处理信息的电子器件。电力电子器件一般都工作在开关状态。电力电子器件往往需要由信息电子电路来控制。电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。4.1 电力电子器件的概念)同处理信息的电子器件相比的一般特征:)同处

2、理信息的电子器件相比的一般特征:电力电子器件晶闸管课件通态损耗通态损耗是器件功率损耗的主要成因。器件开关频率较高时,开关损耗开关损耗可能成为器件功率损耗的主要因素。主要损耗通态损耗断态损耗开关损耗关断损耗开通损耗4.1 电力电子器件的概念 电力电子器件的损耗电力电子器件的损耗电力电子器件晶闸管课件电力电子系统电力电子系统:由控制电路控制电路、驱动电路驱动电路、保护电路保护电路 和以电力电子器件为核心的主电路主电路组成。电力电子器件在实际应用中的系统组成控制电路检测电路驱动电路RL主电路V1V2保护电路在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行4.1 电力电子器件

3、的概念电气隔离控制电路电力电子器件晶闸管课件半控型器件(半控型器件(Thyristor) 通过控制信号可以控制其导通而不能控制其关断。全控型器件(全控型器件(IGBT,MOSFET,GTO,IGCT) ) 通过控制信号既可控制其导通又可控制其关 断,又称自关断器件。不可控器件不可控器件( (Power Diode) ) 不能用控制信号来控制其通断, 因此也就不需要驱动电路。4.1 电力电子器件的概念按照器件能够被控制的程度,分为以下三类:按照器件能够被控制的程度,分为以下三类:电力电子器件晶闸管课件电流驱动型电流驱动型 通过从控制端注入或者抽出电流来实现导通或者 关断的控制。电压驱动型电压驱动

4、型 仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。4.1 电力电子器件的概念 按照驱动电路信号的性质,分为两类:按照驱动电路信号的性质,分为两类:电力电子器件晶闸管课件4.2 半控型器件晶闸管4.2.1 晶闸管的结构与工作原理晶闸管的结构与工作原理4.2.2 晶闸管的基本特性晶闸管的基本特性4.2.3 晶闸管的主要参数晶闸管的主要参数4.2.4 晶闸管的派生器件晶闸管的派生器件电力电子器件晶闸管课件晶晶闸闸管管(Thyristor):晶体闸流管,可控硅整流器(Silicon Controlled RectifierSCR)4.2.1 晶闸管的结构与工作原理晶闸管的结构

5、与工作原理电力电子器件晶闸管课件晶闸管的结构与工作原理晶闸管的结构与工作原理常用晶闸管的结构螺栓型晶闸管晶闸管模块平板型晶闸管外形及结构电力电子器件晶闸管课件晶闸管的结构与工作原理晶闸管的结构与工作原理式中1和2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1和V2的共基极漏电流。由以上式可得 : 按晶体管的工作原理晶体管的工作原理 ,得:(1-2)(1-1)(1-3)(1-4)(1-5)电力电子器件晶闸管课件晶闸管的结构与工作原理晶闸管的结构与工作原理在低发射极电流下 是很小的,而当发射极电流建立起来之后, 迅速增大。 阻阻断断状状态态:IG=0,1+2很小。流过晶闸

6、管的漏电流稍大于两个晶体管漏电流之和。开开通通状状态态:注入触发电流使晶体管的发射极电流增大以致1+2趋近于1的话,流过晶闸管的电流IA,将趋近于无穷大,实现饱和导通。IA实际由外电路决定。电力电子器件晶闸管课件4.2.2 晶闸管的基本特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下 。晶闸管正常工作时的特性总结如下:晶闸管正常工作时的特性总结如下:电力电子器件晶闸管课件4.2.2 晶闸管的基本特性(1)正向特性IG=0时,器件

7、两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。正向电压超过正向转折电压Ubo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正向转折电压降低。晶闸管本身的压降很小,在1V左右。正向导通雪崩击穿O+UA-UA-IAIAIHIG2IG1IG=0UboUDSMUDRMURRMURSM1 1) 静态特性静态特性图1-8 晶闸管的伏安特性IG2IG1IG电力电子器件晶闸管课件4.2.2 晶闸管的基本特性反向特性类似二极管的反向特性。反向阻断状态时,只有极小的反相漏电流流过。当反向电压达到反向击穿电压后,可能导致晶闸管发热损坏。图1-8 晶闸管的伏安特性IG2IG1IG正向导通雪崩击穿O+

8、UA-UA-IAIAIHIG2IG1IG=0UboUDSMUDRMURRMURSM(2)反向特性反向特性电力电子器件晶闸管课件4.2.2 晶闸管的基本特性1) 开通过程延迟时间延迟时间td (0.51.5 s)上升时间上升时间tr (0.53 s)开开通通时时间间tgt以上两者之和, tgt=td+ tr (1-6)100%90%10%uAKttO0tdtrtrrtgrURRMIRMiA2) 关断过程反向阻断恢复时间反向阻断恢复时间trr正向阻断恢复时间正向阻断恢复时间tgr关关断断时时间间t tq以上两者之和tq=trr+tgr (1-7)普通晶闸管的关断时间约几百微秒2) 动态特性动态特性

9、图1-9 晶闸管的开通和关断过程波形电力电子器件晶闸管课件4.2.3 晶闸管的主要参数断态重复峰值电压断态重复峰值电压UDRM 在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。反向重复峰值电压反向重复峰值电压URRM 在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。通态(峰值)电压通态(峰值)电压UT 晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。通 常 取 晶 闸 管 的UDRM和URRM中较小的标值作为该器件的额定电压额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压23倍。使用注意:使用注意:1)电压定额电压定额电力电子器件晶闸管课件

10、4.2.3 晶闸管的主要参数通态平均电流通态平均电流 IT(AV)在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值最大工频正弦半波电流的平均值。标称其额定电流的参数。使用时应按有效值相等的原则有效值相等的原则来选取晶闸管。维持电流维持电流 IH 使晶闸管维持导通所必需的最小电流。擎住电流擎住电流 IL 晶闸管刚从断态转入通态并移除触发信号后, 能维持导通所需的最小电流。对同一晶闸管来说对同一晶闸管来说,通常通常IL约为约为IH的的24倍倍。浪涌电流浪涌电流ITSM指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流 。2

11、2)电流定额电流定额电力电子器件晶闸管课件4. 3 晶闸管的主要参数 除开通时间tgt和关断时间tq外,还有:断态电压临界上升断态电压临界上升率率du/dt 指在额定结温和门极开路的情况下,不导致晶闸管从断态到通 态转换的外加电压最大上升率。 电压上升率过大,使充电电流足够大,就会使晶闸管误导通 。 通态电流临界上升通态电流临界上升率率di/dt 指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 如果电流上升太快,可能造成局部过热而使晶闸管损坏。3 3)动态参数动态参数电力电子器件晶闸管课件4.3.1 门极可关断晶闸管晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。

12、GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。门门极极可可关关断断晶晶闸闸管管(Gate-Turn-Off Thyristor GTO)电力电子器件晶闸管课件4.3.1 门极可关断晶闸管结构结构:与普通晶闸管的相相同同点点: PNPN四层半导体结构,外部引出阳极、阴极和门极。和普通晶闸管的不同点不同点:GTO是一种多元的功率集成器件。 a) 各单元的阴极、门极间隔排列的图形 b) 并联单元结构断面示意图 c) 电气图形符号1)GTO的结构和工作原理的结构和工作原理电力电子器件晶闸管课件4.3.1 门极可关断晶闸管工作原理工作原理: 1 1+ + 2

13、2=1=1是器件临界导通的条件。是器件临界导通的条件。由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益 1 1和 2 2 。电力电子器件晶闸管课件4.3.1 门极可关断晶闸管GTO能够通过门极关断的原因是其与普通晶闸管有如下区别:设计2较大,使晶体管V2控 制灵敏,易于GTO。导通时1+2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。 多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。 电力电子器件晶闸管课件4.3.1 门极可关断晶闸管GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。GTO关断过程中有强烈正反馈使器件退出饱和

14、而关断。多元集成结构还使GTO比普通晶闸管开通过程快,承受di/dt能力强 。 由上述分析我们可以得到以下结论结论:电力电子器件晶闸管课件4.3.1 门极可关断晶闸管开开通通过过程程:与普通晶闸管相同关关断断过过程程:与普通晶闸管有所不同储储存存时时间间ts,使等效晶体管退出饱和。下降时间下降时间tf 尾尾部部时时间间tt 残存载流子复合。通常tf比ts小得多,而tt比ts要长。门极负脉冲电流幅值越大,ts越短。Ot0tiGiAIA90%IA10%IAtttftstdtrt0t1t2t3t4t5t6GTO的开通和关断过程电流波形2)GTO的动态特性的动态特性电力电子器件晶闸管课件4.3.1 门

15、极可关断晶闸管3)GTO的主要参数的主要参数 延迟时间与上升时间之和。延迟时间一般约12s,上升时间则随通态阳极电流的增大而增大。 一般指储存时间和下降时间之和,不包括尾部时间。下降时间一般小于2s。(2) 关断时间关断时间toff(1)开通时间开通时间ton 不少GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联 。 许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。电力电子器件晶闸管课件4.3.1 门极可关断晶闸管(3)最大可关断阳极电流最大可关断阳极电流IATO(4) 电流关断增益电流关断增益 off off一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断时门极负脉冲电流峰值要200A 。 GTO额定电流。 最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。(1-8)电力电子器件晶闸管课件

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号