仪器分析原子发射光谱分析7

上传人:s9****2 文档编号:568271189 上传时间:2024-07-23 格式:PPT 页数:68 大小:4.70MB
返回 下载 相关 举报
仪器分析原子发射光谱分析7_第1页
第1页 / 共68页
仪器分析原子发射光谱分析7_第2页
第2页 / 共68页
仪器分析原子发射光谱分析7_第3页
第3页 / 共68页
仪器分析原子发射光谱分析7_第4页
第4页 / 共68页
仪器分析原子发射光谱分析7_第5页
第5页 / 共68页
点击查看更多>>
资源描述

《仪器分析原子发射光谱分析7》由会员分享,可在线阅读,更多相关《仪器分析原子发射光谱分析7(68页珍藏版)》请在金锄头文库上搜索。

1、 第七章第七章 原子发射光谱分析原子发射光谱分析 (Atomic Emission Spectrometry, AES)7-1 7-1 光学分析光学分析概述概述一、电磁辐射和电磁波谱 1电磁辐射(电磁波,光):以巨大速度通过空间、不需要任何物质作为传播媒介的一种能量形式,它是检测物质内在微观信息的最佳信使最佳信使。2电磁辐射的性质:具有波、粒二像性;其能量交换一般为单光子形式,且必须满足量子跃迁能量公式: 3电磁波谱:电磁辐射按波长顺序排列就称光谱。射线射线射线射线 X X X X 射线射线射线射线紫外光紫外光紫外光紫外光可见光可见光可见光可见光红外光红外光红外光红外光微波微波微波微波无线电波

2、无线电波无线电波无线电波 高能辐射区高能辐射区 射线射线 能量最高,来源于核能级跃迁能量最高,来源于核能级跃迁 射线射线 来自内层电子能级的跃迁来自内层电子能级的跃迁 光学光谱区光学光谱区 紫外光紫外光 来自原子和分子外层电子能级的跃迁来自原子和分子外层电子能级的跃迁 可见光可见光 红外光红外光 来自分子振动和转动能级的跃迁来自分子振动和转动能级的跃迁 波谱区波谱区 微波微波 来自分子转动能级及电子自旋能级跃迁来自分子转动能级及电子自旋能级跃迁 无线电波无线电波 来自原子核自旋能级的跃迁来自原子核自旋能级的跃迁波长波长波长波长长长长长二、光学分析法及其分类二、光学分析法及其分类 光学分析法可分

3、为:Spectrometric method 和non-spectrometric method两大类。 光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。AE、AA 按能量交换方向分按能量交换方向分 吸收光谱法吸收光谱法 发射光谱法发射光谱法 按作用结果不同分按作用结果不同分 原子光谱原子光谱线状光谱线状光谱 分子光谱分子光谱带状光谱带状光谱 区区区区别别: 非光谱法:利用物质与电磁辐射的相互作用测定非光谱法:利用物质与电磁辐射的相互作用测定电磁辐射的反射、折射、干涉、衍射和偏振等基本性电磁辐射的反射、折射、干涉、

4、衍射和偏振等基本性质变化的分析方法质变化的分析方法 分类:折射法、旋光法、比浊法、分类:折射法、旋光法、比浊法、 射线衍射法射线衍射法光谱法:内部能级发生变化光谱法:内部能级发生变化 原子吸收原子吸收/ /发射光谱法:原子外层电子能级跃迁发射光谱法:原子外层电子能级跃迁 分子吸收分子吸收/ /发射光谱法:分子外层电子能级跃迁发射光谱法:分子外层电子能级跃迁非光谱法:内部能级不发生变化非光谱法:内部能级不发生变化 仅测定电磁辐射性质改变仅测定电磁辐射性质改变 三、发射光谱与吸收光谱三、发射光谱与吸收光谱例:例:-射线;射线;x-x-射线;荧光射线;荧光例:原子吸收光谱,分子吸收光谱例:原子吸收光

5、谱,分子吸收光谱例:原子吸收光谱,分子吸收光谱例:原子吸收光谱,分子吸收光谱7-2 7-2 原子发射光谱分析原子发射光谱分析原理原理 一、原子发射光谱的产生 物质通过电致激发、热致激发或光致激发电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M* ,当从激发态过渡到低能态或基态时产生发射光谱。 M* M + hv 通过测量物质的激发态原子发射光谱线的波长和强度进行定性和定量分析的方法叫发射光谱分析法。 根据发射光谱所在的光谱区域和激发方法不同,发射光谱法有许多技术,我们仅讨论常规的方法:用火焰、电弧、等离子炬等作为激发源,使被测物质原子化并激发气态原子或离子的外层电子,使其

6、发射特征的电磁辐射,利用光谱技术记录后进行分析的方法叫原子发射光谱分析法,波长范围一般在190900nm。一般情况下,原子处于基态,在激发光源作用下,原子获一般情况下,原子处于基态,在激发光源作用下,原子获得能量,外层电子从基态跃迁到较高能态变为激发态得能量,外层电子从基态跃迁到较高能态变为激发态 ,约经,约经1010-8-8 s s,外层电子就从高能级向较低能级或基态跃迁,多余的能,外层电子就从高能级向较低能级或基态跃迁,多余的能量的发射可得到一条光谱线。量的发射可得到一条光谱线。 原子中某一外层电子由基态激发到高能级所需要的能原子中某一外层电子由基态激发到高能级所需要的能量称为量称为激发电

7、位激发电位(Excitation potential)(Excitation potential)。原子光谱中每一条谱线的产生各有其相应的激发电位。原子光谱中每一条谱线的产生各有其相应的激发电位。由激发态由激发态向基态跃迁所发射的谱线称为共振线向基态跃迁所发射的谱线称为共振线( (resonanceresonance line) line)。共振线共振线具有最小的激发电位,因此最容易被激发,具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。为该元素最强的谱线。 离子也可能被激发,其外层电子跃迁也发射光谱。由于离离子也可能被激发,其外层电子跃迁也发射光谱。由于离子和原子具有不同的能级,所

8、以离子发射的光谱与原子发射的光子和原子具有不同的能级,所以离子发射的光谱与原子发射的光谱不一样。每一条离子线都有其激发电位。这些离子线的激发电谱不一样。每一条离子线都有其激发电位。这些离子线的激发电位大小与电离电位高低无关位大小与电离电位高低无关 在原子谱线表中,罗马数罗马数表示中性原子发射光谱的表示中性原子发射光谱的谱线,谱线,表示一次电离离子发射的谱线,表示一次电离离子发射的谱线,表示二次表示二次电离离子发射的谱线电离离子发射的谱线例如例如Mg 285.21nm285.21nm为原子线,为原子线,MgMg280.27nm为一次电离离子线。为一次电离离子线。激发电位激发电位(Excitati

9、on potential) 谱线强度与激发电位成负指数关系。在温度一谱线强度与激发电位成负指数关系。在温度一定时,激发电位越高,处于该能量状态的原子数越少,定时,激发电位越高,处于该能量状态的原子数越少,谱线强度越小。激发电位最低的共振线通常是强度最谱线强度越小。激发电位最低的共振线通常是强度最大的线。大的线。激发温度激发温度(Excitation temperature) 温度升高,谱线强度增大。但温度升高,电离温度升高,谱线强度增大。但温度升高,电离的原子数目也会增多,而相应的原子数减少,致使原的原子数目也会增多,而相应的原子数减少,致使原子谱线强度减弱,离子的谱线强度增大。子谱线强度减弱

10、,离子的谱线强度增大。二、热平衡态与原子布居数目 玻尔兹曼关系式: 此关系式表明激发温度越高、元素的激发电位越低,则原子光谱线就越强;且特征发射光谱线的强度与基态原子浓度呈正比关系。三、谱线的自吸与自蚀(self-absorption and self-reversal of spectral lines)在一般光源中,是在弧焰中产生的,弧焰具有一定的厚度,弧焰中心a的温度最高,边缘b的温度较低。由弧焰中心发射出来的辐射光,必须通过整个弧焰才能射出,由于弧层边缘的温度较低,因而这里处于基态的同类原子较多。这些低能态的同类原子能吸收高能态原子发射出来的光而产生吸收光谱。原子在高温时被激发,发射某

11、一波长的谱线,而处于低温状态的同类原子又能吸收这一波长的辐射,这种现象称为自吸现象自吸现象。当自吸现象非常严重时,谱线中心的辐射将完全被吸收,这种现象称为自蚀自蚀。 1,无自吸;,无自吸; 2,自吸;,自吸; 3,自蚀,自蚀7-3 7-3 原子发射光谱分析原子发射光谱分析仪器仪器 用来研究吸收、发射或荧光的电磁辐射用来研究吸收、发射或荧光的电磁辐射强度和波长关系的仪器叫做光谱仪或分光光度强度和波长关系的仪器叫做光谱仪或分光光度计。计。 光谱仪或分光光度计一般包括五个基本光谱仪或分光光度计一般包括五个基本单元:单元:光源、单色器、样品容器、检测器和读光源、单色器、样品容器、检测器和读出器件。出器

12、件。 发射光谱仪结构示意图发射光谱仪结构示意图 一、一、光源光源(Light source)(Light source): 光源是提供足够的能量使试样蒸发、原子化、激发,产生光谱。目前常用的光源有高温火焰、直流电弧(DCarc)、交流电弧(ACarc)、电火花(electricspark)及电感耦合高频等离子体(ICP)。1.直流电弧 直流电弧的最大优点是电极头温度相对比较高(4000至7000K,与其它光源比),蒸发能力强、绝对灵敏度高、背景小;缺点是放电不稳定,且弧较厚,自吸现象严重,故不适宜用于高含量定量分析,但可很好地应用于矿石等的定性、半定量及痕量元素的定量分析。 2. 交流电弧与直

13、流与直流相比,交流电弧的电极头温度稍低一些,相比,交流电弧的电极头温度稍低一些,但弧温较高,出现的离子线比支流电弧中多。由于有但弧温较高,出现的离子线比支流电弧中多。由于有控制放电装置,故电弧较稳定。广泛用于定性、定量控制放电装置,故电弧较稳定。广泛用于定性、定量分析中,但分析中,但灵敏度稍差。这种电源常用于金属、合金灵敏度稍差。这种电源常用于金属、合金中低含量元素的定量分析。中低含量元素的定量分析。 3. 火花 由于高压火花放电时间极短,故在这一瞬间内通过由于高压火花放电时间极短,故在这一瞬间内通过分析间隙的电流密度很大(高达分析间隙的电流密度很大(高达10000 50000 A/cm2,因

14、此弧焰瞬间温度很高,可达,因此弧焰瞬间温度很高,可达10000K以上,以上,故激发能量大,可激发电离电位高的元素。由于电火故激发能量大,可激发电离电位高的元素。由于电火花是以间隙方式进行工作的,平均电流密度并不高,花是以间隙方式进行工作的,平均电流密度并不高,所以电极头温度较低,且弧焰半径较小。所以电极头温度较低,且弧焰半径较小。这种光源主要用于易熔金属合金试样的分析及高这种光源主要用于易熔金属合金试样的分析及高含量元素的定量分析。含量元素的定量分析。4. 等离子体光源等离子体光源 等离子体是一种电离度大于等离子体是一种电离度大于0.1%的电离气的电离气体,由电子、离子、原子和分子所组成,其中

15、电体,由电子、离子、原子和分子所组成,其中电子数目和离子数目基本相等,整体呈现中性。子数目和离子数目基本相等,整体呈现中性。 最常用的等离子体光源是直流等离子焰最常用的等离子体光源是直流等离子焰(DCP)、感耦高频等离子炬()、感耦高频等离子炬(ICP)、容耦微)、容耦微 波等离子炬(波等离子炬(CMP)和微波诱导等离子体)和微波诱导等离子体(MIP)等。)等。最常见的是感耦高频等离子炬(最常见的是感耦高频等离子炬(inductive coupled inductive coupled high frequency plasma, ICP)high frequency plasma, ICP)

16、: 感耦高频等离子炬用电感耦合传递功率,是应用感耦高频等离子炬用电感耦合传递功率,是应用较广的一种等离子光源。感耦高频等离子炬的装置,较广的一种等离子光源。感耦高频等离子炬的装置,由高频发生器、进样系统(包括供气系统)和等离子由高频发生器、进样系统(包括供气系统)和等离子炬管三部分组成。在有气体的石英管外套装一个高频炬管三部分组成。在有气体的石英管外套装一个高频感应线圈,感应线圈与高频发生器连接感应线圈,感应线圈与高频发生器连接。当高频电流。当高频电流通过线圈时,在管的内外形成强烈的振荡磁场,在高通过线圈时,在管的内外形成强烈的振荡磁场,在高频(约频(约30兆赫)时形成的等离子炬,其形状似圆环

17、,兆赫)时形成的等离子炬,其形状似圆环,试样微粒可以沿着等离子炬,轴心通过,对试样的蒸试样微粒可以沿着等离子炬,轴心通过,对试样的蒸发激发极为有利。这种具有中心通道的等离子炬,正发激发极为有利。这种具有中心通道的等离子炬,正是发射光谱分析的优良的激发光源。是发射光谱分析的优良的激发光源。 环状结构可以分为若干区,各区的温度不同,性状不环状结构可以分为若干区,各区的温度不同,性状不同,辐射也不同。同,辐射也不同。(1)焰心区)焰心区 感应线圈区域内,白色不透明的焰心,高频电流感应线圈区域内,白色不透明的焰心,高频电流形成的涡流区,形成的涡流区,温度最高达温度最高达10000K,电子密度高。,电子

18、密度高。它发射很强的连续光谱,光谱分析应避开这个区域。它发射很强的连续光谱,光谱分析应避开这个区域。试样气溶胶在此区域被预热、蒸发,又叫预热区。试样气溶胶在此区域被预热、蒸发,又叫预热区。(2)内焰区)内焰区 在感应圈上在感应圈上10 20mm左右处,淡蓝色半透明的左右处,淡蓝色半透明的炬焰,炬焰,温度约为温度约为6000 8000K。试样在此原子化、激。试样在此原子化、激发,发,然后发射很强的原子线和离子线。这是光谱分析然后发射很强的原子线和离子线。这是光谱分析所利用的区域,称为测光区。测光时在感应线圈上的所利用的区域,称为测光区。测光时在感应线圈上的高度称为观测高度。高度称为观测高度。(3

19、 3)尾焰区)尾焰区 在内焰区上方,无色透明,温度低于在内焰区上方,无色透明,温度低于6000K,只,只能发射激发电位较低的谱线。能发射激发电位较低的谱线。 ICP的分析性能:(1)检出限低(10-910-11g/L);(2)稳定性好,精密度、准确度高(0.5%2%);(3)线性范围极宽45个数量级。(4)自吸效应、基体效应小;(5)选择合适的观测高度光谱背景小。ICP局限性:对非金属测定灵敏度低,仪器价格昂贵,维持费用较高(耗用大量Ar气)。二、二、光谱仪(摄谱仪 Spectrograph)(见下页图)(见下页图)光谱仪的核心是分光系统和记录系统B准直透镜照明系统(lightingsyste

20、m)色散系统(dispersivesystem)投影系统(projection system)1. Prism spectrograph凹面镜凹面镜2. Grating spectrographIRIS Advantage 中阶梯光栅分光系统(实物图)中阶梯光栅分光系统(实物图)表明分光能力的指标为:(nm/mm),(nm).3.光谱检测部件在原子发射光谱法中,常用的检测方法有: 目视法、摄谱法和光电法目视法、摄谱法和光电法目视法目视法 用眼睛来观测谱线强度的方法称为用眼睛来观测谱线强度的方法称为目视法目视法(看谱法)。(看谱法)。这种方法仅适用于可见光波段。常用的仪器为看谱镜。看谱这种方法仅

21、适用于可见光波段。常用的仪器为看谱镜。看谱镜是一种小型的光谱仪,专门用于钢铁及有色金属的半定量镜是一种小型的光谱仪,专门用于钢铁及有色金属的半定量分析。分析。摄谱法摄谱法 摄谱法是用感光板记录光谱。将光谱感光板置于摄谱摄谱法是用感光板记录光谱。将光谱感光板置于摄谱仪焦面上,接受被分析试样的光谱作用而感光,再经过显影、仪焦面上,接受被分析试样的光谱作用而感光,再经过显影、定影等过程后,制得光谱底片,其上有许多黑度不同的光谱定影等过程后,制得光谱底片,其上有许多黑度不同的光谱线。然后用线。然后用影谱仪影谱仪观察谱线位置及大致强度,用观察谱线位置及大致强度,用比长仪比长仪精确精确确定谱线位置进行光谱

22、定性及半定量分析。用确定谱线位置进行光谱定性及半定量分析。用测微光度计测微光度计测测量谱线的黑度,进行光谱定量分析。量谱线的黑度,进行光谱定量分析。Phototube 光电法光电法光电法用光电倍增管、光电二极管或CCD检测器直接获得光谱线的相对强度进行定量分析。在进行光谱定性分析及观察谱片时需要使用影谱仪。一般放大倍数为20倍左右,并与标准铁光谱图进行比较得出定性结果。1.光谱投影仪光谱投影仪(Spectrum projector)In the right figure, the red rod is photographic plate4. 4. 辅助观测设备:辅助观测设备:2. 测微光度计

23、(测微光度计(Microphotometer)测微光度计上具有三种读数标尺:直线标尺,即D标 尺,刻度为0 1000,相当于分光 光度计上的透光度T标尺;黑度标尺, 即S标尺,刻度为 0,相当于分光光 度计上 的吸光度A标尺;W标尺, 刻度为 - 。 和P标尺。3. 比长仪比长仪7-4 7-4 原子发射光谱定性分析原子发射光谱定性分析 一、实验步骤: 1、样品处理 2、光谱摄取3、谱线检查摄谱后,在暗室中进行显影、定影、冲洗,最后将干燥好的谱片放在映谱仪上进行谱线检查)二、定性分析方法 1、灵敏线法: 一般元素谱线的强度会随浓度的下降而消失其总数量也会同时减少,所有谱线中最后消失的谱线称“最后

24、线”也是最灵敏线。若以此线为分析线就可以定性分析某元素。 2、特征谱线法: 每个元素的原子发射谱线有很多,但不同元素有不同的谱线特征,所以可以借助特征谱对元素进行定性分析。例如:7-5 7-5 原子发射光谱定量分析原子发射光谱定量分析 一、罗马金公式 I = a c b公式中参数:a、是与试样的蒸发、激发过程和试样组成有关的参数,它与样品处理过程和样品基底密切相关。 b、是与自吸收有关的参数,称为自吸系数。lgI = blg c + lg a由于系数a受测定实验条件的影响极大,所以一般在被测元素的谱线中选一条线作为分析线,在基体元素(或定量加入的其它元素)的谱线中选一条与分析线均称的谱线作为内

25、标线(internalstandardline,或称比较线),这两条谱线组成所谓分析线对(分析线和比较线)分析线对(分析线和比较线)。分析线与内标线的绝对强度的比值称为相对强度。内标法就是借测量分折线对的相对强度来进行定量分析的。这样可以使谱线强度由于光源的波动而引起的变化得到补偿。I1 = a1 c1b1I2 = a2 c2 b2 = a3 = constantR = = I1I2a1a3c1b1lgR = lg = b1lgc + lg AI1I2分析线对选择的要求:分析线对选择的要求:内标元素与被测元素在光源作用下应有相近的蒸发性内标元素与被测元素在光源作用下应有相近的蒸发性质;质;内标

26、元素若是外加的,必须是试样中不含或含量极少内标元素若是外加的,必须是试样中不含或含量极少可以忽略的。可以忽略的。分析线对选择需匹配;两条原子线或两条离子线。分析线对选择需匹配;两条原子线或两条离子线。分析线对两条谱线的激发电位相近。分析线对两条谱线的激发电位相近。 若内标元素与被测元素的电离电位相近,分析线对激若内标元素与被测元素的电离电位相近,分析线对激发电位也相近,这样的分析线对称为发电位也相近,这样的分析线对称为“均匀线对均匀线对”。分析线对波长应尽可能接近。分析线对波长应尽可能接近。 分析线对两条谱线应没有自吸或自吸很小,并不受其分析线对两条谱线应没有自吸或自吸很小,并不受其它谱线的干

27、扰。它谱线的干扰。内标元素含量一定的。内标元素含量一定的。 二、乳剂特性曲线 若谱线的记录方式为感光板显影记录时,实验测量到的参数为谱线黑度值S,此黑度与光谱线强度之间的关系与感光板的性质有关,它们之间的记录响应曲线叫“乳剂特性曲线”。S1 = 1lgH1 i1 S2 = 2lgH2 i2 D DS = lgR = blgc + lgA上式为摄谱法定量分析内标法的基本关系式。因分析线对所在部位乳剂特征基本相同,故因分析线对所在部位乳剂特征基本相同,故 1 = 2 = i1 = i2 = i 由于曝光量与谱线强度成正比,因此 S1 = lgI1t1 i S2 = lgI2t2 i 黑度差S =

28、S1 S2 = lg(I1-I2)= lgI1 / I2 = lgR Exposure tiem is the samne on the same photographic plate三、三标准试样法和持久曲线法 上面的方程中涉及三个独立参数b b1 1、lgAlgA、,所以要用三个标准试样来绘制工作曲线,选选取其线性响应段进行定量分析。取其线性响应段进行定量分析。将三个或三个以将三个或三个以上的标准试样和被分析试样于同一实验条件下,上的标准试样和被分析试样于同一实验条件下,在同一感光板上进行在同一感光板上进行 摄谱。由每个标准试样分摄谱。由每个标准试样分析线对的黑度差与标准试样中欲测成分含量

29、析线对的黑度差与标准试样中欲测成分含量 c 的的对数绘制工作曲线,然对数绘制工作曲线,然 后由被测试样光谱中测后由被测试样光谱中测得的分析线对的黑度差,从工作曲线中查出待测得的分析线对的黑度差,从工作曲线中查出待测成分的含量。成分的含量。 若能通过系数校正的方法对不同批次感光板若能通过系数校正的方法对不同批次感光板的反衬度的反衬度进行进行校正,则工作曲线就称持久曲线,校正,则工作曲线就称持久曲线,对某元素的定量就可以长期使用同一曲线。对某元素的定量就可以长期使用同一曲线。7-6 原子发射光谱半定量分析法1.谱线呈现法谱线呈现法When the content of analyzed eleme

30、nt reduces, its spectral line number decrease gradually too. This phenomenon can be exploited on semiquantitative spectrometric analysis. For example, 2. 谱线强度比较法谱线强度比较法 直接比较标准样和测定样同一根谱线的黑度值大小来粗略获得定量信息。 3. 均称线对法均称线对法 选择基体元素或样品中组成恒定的某元素的一些谱线做为待测元素分析线的均称线对(激发电位相近的谱线),通过二者的比较来判断待测成分的近似含量。如:7-8 光电直读原子发射光

31、谱仪7-8 原子发射光谱分析的特点光谱定性分析可靠、灵敏、快速、光谱定性分析可靠、灵敏、快速、 简便、简便、应用范围应用范围 广广。周期表上约七十个元素可以周期表上约七十个元素可以用光谱方法较容易用光谱方法较容易 地定性鉴地定性鉴 定,这是光谱分折的突出应用。定,这是光谱分折的突出应用。 在多数情况下,分析前在多数情况下,分析前不必把待分析的元素从基体不必把待分析的元素从基体 元素中分离出来。元素中分离出来。一次分析可以同时测得样品中一次分析可以同时测得样品中多种元素的含量多种元素的含量。消耗试样量很少,并具有消耗试样量很少,并具有很高的灵敏度很高的灵敏度。适宜于作低含量及适宜于作低含量及痕量元素的分折痕量元素的分折。不适合分析有机物及大部分非金属元素不适合分析有机物及大部分非金属元素。对于冶金工厂,光谱分析不仅可以作成品分析,还对于冶金工厂,光谱分析不仅可以作成品分析,还 可以作控制冶炼的可以作控制冶炼的炉前快速分析炉前快速分析。 作业:作业: P P223-224223-224 1 1,2 2,3 3,9 9,12 12 题题

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号