数学归纳法课件ppt

上传人:壹****1 文档编号:567428098 上传时间:2024-07-20 格式:PPT 页数:15 大小:1.51MB
返回 下载 相关 举报
数学归纳法课件ppt_第1页
第1页 / 共15页
数学归纳法课件ppt_第2页
第2页 / 共15页
数学归纳法课件ppt_第3页
第3页 / 共15页
数学归纳法课件ppt_第4页
第4页 / 共15页
数学归纳法课件ppt_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《数学归纳法课件ppt》由会员分享,可在线阅读,更多相关《数学归纳法课件ppt(15页珍藏版)》请在金锄头文库上搜索。

1、数学归纳法课件数学归纳法课件pptppt2.3 数学归纳法数学归纳法课题引入课题引入不完全归不完全归纳法纳法对于某类事物,由它的一些特殊事对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般例或其全部可能情况,归纳出一般结论的推理方法,叫归纳法。结论的推理方法,叫归纳法。归纳法归纳法完全归纳法完全归纳法不完全归纳法不完全归纳法由特殊由特殊 一般一般 特点特点:a2=a1+da3=a1+2da4=a1+3dan=a1+(n-1)d如何证明如何证明:1+3+5+(2n-1)=n2 (nN*)费马费马(Fermat)是)是1717世纪法国著名的数学世纪法国著名的数学家,他曾认为,当家,他曾认

2、为,当n nN N时,时, 一定都一定都是质数,这是他观察当是质数,这是他观察当n n0 0,1 1,2 2,3 3,4 4时的值都是质数,提出猜想得到的半个时的值都是质数,提出猜想得到的半个世纪后,世纪后,1818世纪伟大的瑞士科学家欧拉世纪伟大的瑞士科学家欧拉(Euler)发现)发现 4 294 967 4 294 967 29729767004176416700417641,从而否定了费马的推,从而否定了费马的推测没想到当测没想到当n n5 5这一结论便不成立这一结论便不成立 举例说明举例说明:一个数列的通项公式是:一个数列的通项公式是:an= (n25n+5)2请算出请算出a1= ,a

3、2= ,a3= ,a4=猜测猜测an?由于由于a525 1,所以猜测是不正确的,所以猜测是不正确的所以由归纳法得到的结论所以由归纳法得到的结论不一定可靠不一定可靠 1111猜测是否正确呢?猜测是否正确呢?思考:这个游戏中,能使所有多米诺骨全部倒思考:这个游戏中,能使所有多米诺骨全部倒下的条件是什么?下的条件是什么?多米诺骨牌(多米诺骨牌(domino)是一种用木制、骨)是一种用木制、骨制或制或塑料塑料制成的长方形制成的长方形骨牌骨牌。玩时将骨牌。玩时将骨牌按一定间距排列成行,轻轻碰倒第一枚骨按一定间距排列成行,轻轻碰倒第一枚骨牌,其余的骨牌就会产生连锁反应,依次牌,其余的骨牌就会产生连锁反应,

4、依次倒下。倒下。多米诺是一项集动手、动脑于一体的运动。多米诺是一项集动手、动脑于一体的运动。一幅图案由几百、几千甚至上万张骨牌组成。骨牌需要一幅图案由几百、几千甚至上万张骨牌组成。骨牌需要一张张摆下去,它不仅考验参与者的体力、耐力和意志一张张摆下去,它不仅考验参与者的体力、耐力和意志力,而且还培养参与者的智力、想象力和创造力。力,而且还培养参与者的智力、想象力和创造力。多米诺是种文化。它起源于多米诺是种文化。它起源于中国中国,有着上千年的历史。,有着上千年的历史。 只要满足以下两个条件,所有多米诺骨只要满足以下两个条件,所有多米诺骨牌就能全部倒下:牌就能全部倒下: (2)任意相邻的两块骨牌,前

5、一块倒下)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。一定导致后一块倒下。 (依据)(依据) 条件(条件(2)事实上给出了一个递推关系:当)事实上给出了一个递推关系:当第第k块倒下时,相邻的第块倒下时,相邻的第k+1块也倒下。块也倒下。思考思考:你认为证明数列的通项公式:你认为证明数列的通项公式 是是这个猜想与上述多米诺骨牌游戏有相似性?你这个猜想与上述多米诺骨牌游戏有相似性?你能类比多米诺骨牌游戏解决这个问题吗?能类比多米诺骨牌游戏解决这个问题吗?(1)第一块骨牌倒下)第一块骨牌倒下;(基础)二、数学归纳法的概念:二、数学归纳法的概念:证明某些与自然数有关的数学题证明某些与自然数有关的

6、数学题, ,可用下列方法来可用下列方法来证明它们的正确性证明它们的正确性: :(1)(1)验证验证当当n n取第一个值取第一个值n n0 0( (例如例如n n0 0=1)=1)时命题成立时命题成立, ,(2)(2)假设假设当当n=k(kn=k(k N N* * ,k k n n0 0 ) )时命题成立时命题成立, , 证明当证明当n=k+1n=k+1时命题也成立时命题也成立完成这两步,就可以断定这个命题对从完成这两步,就可以断定这个命题对从n n0 0开始的所开始的所有正整数有正整数n n都成立。这种证明方法叫做都成立。这种证明方法叫做数学归纳法。数学归纳法。验证验证n=nn=n0 0时命时

7、命题成立题成立若若当当n=k(n=k(k k n n0 0 ) )时命题成立时命题成立, , 证明当证明当n=k+1n=k+1时命题也成立时命题也成立命题对从命题对从n n0 0开始的所开始的所有正整数有正整数n n都成立。都成立。所以所以n=k+1时结论也成立时结论也成立那么那么求证求证注意注意 1 1. .用数学归纳法进行证明时用数学归纳法进行证明时, ,要分两个步要分两个步骤骤, ,两个步骤缺一不可两个步骤缺一不可. .2 (1)(1)(归纳奠基归纳奠基) )是递推的基础是递推的基础. . 找准找准n n0 0(2)(2)(归纳递推归纳递推) )是递推的依据是递推的依据n nk k时时命

8、题成立作为必用的条件运用,而命题成立作为必用的条件运用,而n nk+1k+1时情况则有待时情况则有待利用假设利用假设及已知的定义、公式、及已知的定义、公式、定理等加以证明定理等加以证明证明:证明:当当n=1n=1时,左边时,左边=1=1,右边,右边=1=1,等式成立。,等式成立。 假设假设n=k(kN ,k1)n=k(kN ,k1)时等式成立时等式成立, ,即:即: 1+3+5+(2k-1)=k 1+3+5+(2k-1)=k2 2, 当当n=k+1n=k+1时:时: 1+3+5+(2k-1)+2(k+1)-1=k 1+3+5+(2k-1)+2(k+1)-1=k2 2+2k+1=(k+1)+2k

9、+1=(k+1)2 2, 所以当所以当n=k+1n=k+1时等式也成立。时等式也成立。 由由和和可知,对可知,对nN nN ,原等式都成立。,原等式都成立。例、用数学归纳法证明例、用数学归纳法证明1+3+5+(2n-1)=n1+3+5+(2n-1)=n2 2 (nN nN ). . 请问:请问:第第步中步中“当当n=k+1n=k+1时时”的证明可否改换为:的证明可否改换为:1+3+5+(2k-1)+2(k+1)-1= 1+3+5+(2k-1)+(2k+1)1+3+5+(2k-1)+2(k+1)-1= 1+3+5+(2k-1)+(2k+1)= = (k+1)= = (k+1)2 2 ? ?为什么

10、?为什么?例例:用数学归纳法证明用数学归纳法证明注意注意 1 1. .用数学归纳法进行证明时用数学归纳法进行证明时, ,要分两个步要分两个步骤骤, ,两个步骤缺一不可两个步骤缺一不可. .2 (1)(1)(归纳奠基归纳奠基) )是递推的基础是递推的基础. . 找准找准n n0 0(2)(2)(归纳递推归纳递推) )是递推的依据是递推的依据n nk k时时命题成立作为必用的条件运用,而命题成立作为必用的条件运用,而n nk+1k+1时情况则有待时情况则有待利用假设利用假设及已知的定义、公式、及已知的定义、公式、定理等加以证明定理等加以证明例、求证例、求证: :( (n+1)(n+2)(n+n)=

11、2n+1)(n+2)(n+n)=2n n 1 3 (2n-1) 1 3 (2n-1)证明:证明: n=1 n=1时:左边时:左边=1+1=2=1+1=2,右边,右边=2=21 11=21=2,左边,左边= =右边,等右边,等 式成立。式成立。 假设当假设当n=k(kN n=k(kN )时有:)时有: (k+1)(k+2)(k+k)=2 (k+1)(k+2)(k+k)=2k k 1 3 (2n-1), 1 3 (2n-1), 当当n=k+1n=k+1时:时: 左边左边=(k+2)(k+3)(k+k)(k+k+1)(k+k+2)=(k+2)(k+3)(k+k)(k+k+1)(k+k+2) =(k+1)(k+2)(k+3)(k+k) =(k+1)(k+2)(k+3)(k+k) = 2 = 2k k 1 3(2k-1)(2k+1)2 1 3(2k-1)(2k+1)2 = 2 = 2k+1k+11 3 (2k-1) 2(k+1)-1=1 3 (2k-1) 2(k+1)-1=右边,右边, 当当n=k+1n=k+1时等式也成立。时等式也成立。 由由 、可知,对一切可知,对一切nN ,nN ,原等式均成立。原等式均成立。 作业作业:P:P108 108 A A组组 1 1(2) (2) B B组组 3 3结束结束

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号