发育生物学——细胞命运决定#学习资料

上传人:汽*** 文档编号:567426890 上传时间:2024-07-20 格式:PPT 页数:66 大小:7MB
返回 下载 相关 举报
发育生物学——细胞命运决定#学习资料_第1页
第1页 / 共66页
发育生物学——细胞命运决定#学习资料_第2页
第2页 / 共66页
发育生物学——细胞命运决定#学习资料_第3页
第3页 / 共66页
发育生物学——细胞命运决定#学习资料_第4页
第4页 / 共66页
发育生物学——细胞命运决定#学习资料_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《发育生物学——细胞命运决定#学习资料》由会员分享,可在线阅读,更多相关《发育生物学——细胞命运决定#学习资料(66页珍藏版)》请在金锄头文库上搜索。

1、细胞命运决定及命运图细胞命运决定及命运图山东师范大学生命科学学院动物有机体是由分化细胞动物有机体是由分化细胞(specialized cell)组成组成分化细胞不仅形态多样,而且功能各异分化细胞不仅形态多样,而且功能各异第二节 胚胎细胞发育命运的决定从单个全能的受精卵产生各种类型细胞的发育过程叫细从单个全能的受精卵产生各种类型细胞的发育过程叫细胞分化。胞分化。已分化的细胞已分化的细胞不但具有一定的形态和合成特异不但具有一定的形态和合成特异的产物,而且行使的产物,而且行使特异的功能特异的功能。脊椎动物骨骼肌的分化主要特征脊椎动物骨骼肌的分化主要特征第二节 胚胎细胞发育命运的决定 Fate of

2、cells: 指正常发育情况下细胞将发育的方向,这种方向可指正常发育情况下细胞将发育的方向,这种方向可因条件的改变而改变因条件的改变而改变 定型定型 (commitment): 细胞在细胞在分化之前分化之前,会发生一些隐蔽的变化,会发生一些隐蔽的变化,使细胞命运朝特定方向发展。使细胞命运朝特定方向发展。 - 特化特化(specification) - 决定决定(determination)当一个细胞或者组织放在当一个细胞或者组织放在中性环境中性环境 (neutral environment)如如培养皿中可以自主分化时,可以说这个细胞或组织已经培养皿中可以自主分化时,可以说这个细胞或组织已经特化

3、特化。 They develop according to normal fate.当一个细胞或组织放在胚胎另一个部位可以自主分化时,可以当一个细胞或组织放在胚胎另一个部位可以自主分化时,可以说这个细胞或组织已经说这个细胞或组织已经决定决定。细胞特性发生了不可逆的改变,细胞特性发生了不可逆的改变,发育潜力已经单一化。发育潜力已经单一化。Cell fate: specification and determination已特化的细胞或组织的发育命运是可逆的已特化的细胞或组织的发育命运是可逆的 。如果把已特。如果把已特化的细胞或组织移植到胚胎不同的部位,它就会分化成不化的细胞或组织移植到胚胎不同的

4、部位,它就会分化成不同的组织。同的组织。已决定的细胞或组织的发育命运是不可逆的已决定的细胞或组织的发育命运是不可逆的。在细胞发育过程中,在细胞发育过程中,定型和分化是两个相互关连定型和分化是两个相互关连的过程。的过程。在胚胎早期发育过程中,某一组织或器官的细胞必需先定在胚胎早期发育过程中,某一组织或器官的细胞必需先定型,然后才能向预定的方向发育,也就是分化,形成相应型,然后才能向预定的方向发育,也就是分化,形成相应的组织或器官。定型之后,分化方向变得不可逆转。的组织或器官。定型之后,分化方向变得不可逆转。Cell fate: specification and determination 早期

5、胚胎中,卵裂球的发育命运没有决定早期胚胎中,卵裂球的发育命运没有决定(determination)。随着胚胎的发育,不同卵。随着胚胎的发育,不同卵裂球受本身内在因素及环境条件的影响,其发裂球受本身内在因素及环境条件的影响,其发育命运被确定下来,分化为内胚层、中胚层或育命运被确定下来,分化为内胚层、中胚层或外胚层细胞。外胚层细胞。 细胞发育命运的决定是一个渐进的过程细胞发育命运的决定是一个渐进的过程两栖动物眼区细胞的潜能随发育时期的不同而改变两栖动物眼区细胞的潜能随发育时期的不同而改变胚胎发育早期,细胞的发育潜力更大!胚胎发育早期,细胞的发育潜力更大!原肠胚中眼区将原肠胚中眼区将发育为眼睛。发育

6、为眼睛。将原肠胚中眼区将原肠胚中眼区细胞移植到神经细胞移植到神经胚的躯干区,它胚的躯干区,它们将按新部位的们将按新部位的命运发育为体节命运发育为体节和脊索。和脊索。将神经胚中眼区将神经胚中眼区细胞移植到神经细胞移植到神经胚的躯干区,它胚的躯干区,它们仍将发育为类们仍将发育为类似于眼的结构。似于眼的结构。细胞命运的定型的作用方式细胞命运的定型的作用方式胞质隔离胞质隔离 (cytoplasmic segregation):卵裂时,受精卵内特定的细:卵裂时,受精卵内特定的细胞质分离到特定的分裂球中,裂球中所含有的特定胞质决定它发育成胞质分离到特定的分裂球中,裂球中所含有的特定胞质决定它发育成哪一类细

7、胞,细胞命运的决定与临近的细胞无关。哪一类细胞,细胞命运的决定与临近的细胞无关。 自主特化自主特化(autonomous specification)。以细胞自主特化为特点)。以细胞自主特化为特点的胚胎发育模式称为的胚胎发育模式称为镶嵌型发育镶嵌型发育 (mosaic development),或自主性,或自主性发育,整体胚胎好像是自我分化的各部分的总和。发育,整体胚胎好像是自我分化的各部分的总和。无脊椎动物为主。无脊椎动物为主。Weismann理论的核心强调早期的卵裂必须为理论的核心强调早期的卵裂必须为不对称卵裂。卵裂结果产生的子细胞彼此之间是不对称卵裂。卵裂结果产生的子细胞彼此之间是完全不

8、同的。完全不同的。细胞质中决定因子的定位和细胞不对称分裂使细细胞质中决定因子的定位和细胞不对称分裂使细胞变得不同胞变得不同细胞分裂时母细胞中的某些分子不均等地分配到两个子细胞分裂时母细胞中的某些分子不均等地分配到两个子细胞中,造成子细胞向不同方向分化。细胞中,造成子细胞向不同方向分化。不对称分裂:生成不同的子细胞不对称分裂:生成不同的子细胞细胞质分裂时分配到子细胞质分裂时分配到子细胞质分裂时分配到子细胞质分裂时分配到子细胞中的细胞质不均一细胞中的细胞质不均一细胞中的细胞质不均一细胞中的细胞质不均一, ,在一定程度上决定了细在一定程度上决定了细在一定程度上决定了细在一定程度上决定了细胞的早期分化

9、。细胞质胞的早期分化。细胞质胞的早期分化。细胞质胞的早期分化。细胞质中决定细胞命运的特殊中决定细胞命运的特殊中决定细胞命运的特殊中决定细胞命运的特殊信号物质称为信号物质称为信号物质称为信号物质称为决定子决定子决定子决定子(determinant)(determinant)Cell fate determinationCytoplasmic localization and asymmetric cell division: result in daughter cells having properties different from each other; chemical differe

10、nces distributed in the egg in the form of determinants (mRNA or proteins, Xenopus- VegT, vegetal regions of the fertilized egg)Cell fate determinationAsymmetric division: stem cell: repeated division-stem cells and differentiate into a variety of cell types; in adult-self renewal; Pluripotent.海鞘不同区

11、域的卵海鞘不同区域的卵细胞质分别与未来细胞质分别与未来胚胎特定的发育命胚胎特定的发育命运相联系。黄色新运相联系。黄色新月区含有黄色细胞月区含有黄色细胞质,称为肌质质,称为肌质(myoplasm),),将来形成肌细胞。将来形成肌细胞。灰色新月区含有灰灰色新月区含有灰色细胞质,将来形色细胞质,将来形成脊索和神经管。成脊索和神经管。动物极部分含透明动物极部分含透明细胞质,将来形成细胞质,将来形成幼虫表皮。灰色卵幼虫表皮。灰色卵黄区含大量灰色的黄区含大量灰色的卵黄,将来形成幼卵黄,将来形成幼虫消化道。虫消化道。柄海鞘的镶柄海鞘的镶嵌型发育。嵌型发育。当当8细胞期胚细胞期胚胎中的胎中的4对卵对卵裂球被分

12、离裂球被分离后,每对卵后,每对卵裂球只能发裂球只能发育为部分结育为部分结构。构。海鞘属于典型的镶嵌型发育胚胎。典型的海鞘属于典型的镶嵌型发育胚胎。典型的镶嵌型发育镶嵌型发育的胚胎还有栉水母的胚胎还有栉水母(tenophores)、环节动物、环节动物(annelids)、线、线虫虫(nematodes)和软体动物(和软体动物(molluscs)等。另一方面,海胆、两栖类和鱼类等动等。另一方面,海胆、两栖类和鱼类等动物的胚胎属于典型的物的胚胎属于典型的调整型发育胚胎调整型发育胚胎。在。在这些呈典型的调整型发育的动物卵子细胞这些呈典型的调整型发育的动物卵子细胞质中,也存在着形态发生决定子。质中,也存

13、在着形态发生决定子。形态发生决定子广泛存在于各种动物的卵形态发生决定子广泛存在于各种动物的卵子细胞质中。子细胞质中。形态发生决定子在卵细胞质中呈一定形式分布,受精形态发生决定子在卵细胞质中呈一定形式分布,受精时发生运动,被分隔到一定区域,并在卵裂时分配到时发生运动,被分隔到一定区域,并在卵裂时分配到特定的裂球中,决定裂球的发育命运。这一现象称为特定的裂球中,决定裂球的发育命运。这一现象称为胞质定域胞质定域(cytoplasmic localization)。胞质定域)。胞质定域也称为胞质隔离(也称为胞质隔离(cytoplasmic segregation)或胞)或胞质区域化(质区域化(cyto

14、plasmic regionalization)或胞质)或胞质重排(重排(cytoplasmic rearrangement)。)。胞质定域胞质定域海鞘(海鞘(Phallusia mammillata)受精时胞质定域的)受精时胞质定域的分离分离表皮决定子表皮决定子表皮决定子表皮决定子在受精过程中迁移到卵子动物极顶部在受精过程中迁移到卵子动物极顶部在受精过程中迁移到卵子动物极顶部在受精过程中迁移到卵子动物极顶部(apical region),(apical region),卵裂时进入动物极裂球中。卵裂时进入动物极裂球中。卵裂时进入动物极裂球中。卵裂时进入动物极裂球中。内胚层决定子内胚层决定子内胚

15、层决定子内胚层决定子在受精过程中迁移到卵子植物极半球,卵裂时进入植在受精过程中迁移到卵子植物极半球,卵裂时进入植在受精过程中迁移到卵子植物极半球,卵裂时进入植在受精过程中迁移到卵子植物极半球,卵裂时进入植物极裂球中。物极裂球中。物极裂球中。物极裂球中。秀丽新小杆线虫胚胎细胞命运主要由秀丽新小杆线虫胚胎细胞命运主要由卵内细胞卵内细胞质决定质决定,而不是由邻近细胞间相互作用决定。,而不是由邻近细胞间相互作用决定。其胚胎中发现的其胚胎中发现的SKN1蛋白质就很可能是一蛋白质就很可能是一种种“转录因子转录因子”样形态发生决定子。样形态发生决定子。SKN-1可能通过激活可能通过激活P1裂球及其产生的裂球

16、及其产生的EMS和和P2两裂球中的某些特定基因,从而决定它两裂球中的某些特定基因,从而决定它们的发育命运。咽部细胞命运可以通过分离们的发育命运。咽部细胞命运可以通过分离到这些裂球中的母源性因子(到这些裂球中的母源性因子(maternal factor)自主决定。)自主决定。skn-1突变体中肠和咽部的缺陷突变体中肠和咽部的缺陷形态发生决定子的性质形态发生决定子的性质形态发生决定子可能是某些形态发生决定子可能是某些特异性蛋白质或特异性蛋白质或mRNA等生物大分子物质,它们可以激活或抑等生物大分子物质,它们可以激活或抑制某些基因表达,从而决定细胞的分化方向。制某些基因表达,从而决定细胞的分化方向。

17、形态发生决定子的性质和作用方式在海鞘和果形态发生决定子的性质和作用方式在海鞘和果蝇中研究较为深入。蝇中研究较为深入。海鞘胚胎中:海鞘胚胎中: 第一类是可以第一类是可以激活某些基因激活某些基因(乙酰胆碱酯酶(乙酰胆碱酯酶基因)基因)转录转录的物质,因为海鞘胚胎中多数组织的物质,因为海鞘胚胎中多数组织特异性结构的形成都对转录抑制剂敏感;特异性结构的形成都对转录抑制剂敏感; 第二类可能是以第二类可能是以mRNA的形式存在于卵内一的形式存在于卵内一定的区域,在卵裂时分布到预定的裂球中。定的区域,在卵裂时分布到预定的裂球中。探讨胚胎的决定状态,应对探讨胚胎的决定状态,应对决定细胞发育命运决定细胞发育命运

18、的蛋白质或的蛋白质或mRNA进行分析鉴别,而不是分析进行分析鉴别,而不是分析鉴别细胞分化时产生的特异性蛋白质和鉴别细胞分化时产生的特异性蛋白质和mRNA。果蝇极质果蝇极质果蝇生殖质(极质)的组分之一是果蝇生殖质(极质)的组分之一是gcl(germ cell-less)基因转录的)基因转录的mRNA。 另一种可能是另一种可能是Nanos蛋白。蛋白。Nanos mRNA蛋白位于蛋白位于卵子后端,卵子后端,Nanos蛋白是果蝇形成腹部所必需。缺乏蛋白是果蝇形成腹部所必需。缺乏Nanos蛋白的极细胞不能迁移到生殖腺中,因而不能蛋白的极细胞不能迁移到生殖腺中,因而不能发育成生殖细胞。发育成生殖细胞。 o

19、skar基因在果蝇极质的形成和装配过程中起着极其基因在果蝇极质的形成和装配过程中起着极其重要的调控作用。重要的调控作用。Oskar基因将其基因将其mRNA定位于胚胎定位于胚胎的后极。的后极。 至少有至少有8种种母体效应基因母体效应基因(maternal effect gene)的突变会导致果蝇不能形成极质,不能形成生)的突变会导致果蝇不能形成极质,不能形成生殖细胞。殖细胞。A. staufen基因内应在基因内应在oskar基因之前行使功能,并影基因之前行使功能,并影响响oskar基因的表达。基因的表达。B. 研究明了的影响果蝇生殖细研究明了的影响果蝇生殖细胞发生的胞发生的6种基因的作用顺序。种

20、基因的作用顺序。细胞命运的定型的作用方式细胞命运的定型的作用方式胚胎诱导胚胎诱导:胚胎发育过程中,相邻细胞或组织之间通过相互作用,决:胚胎发育过程中,相邻细胞或组织之间通过相互作用,决定其中一方或双方的分化方向。定其中一方或双方的分化方向。 有条件特化有条件特化(conditional specification),因为细胞命运取决于与),因为细胞命运取决于与其临近的细胞或组织。以细胞有条件特化为特点的胚胎发育模式称为其临近的细胞或组织。以细胞有条件特化为特点的胚胎发育模式称为调整型发育调整型发育(regulative development),或依赖型发育。),或依赖型发育。脊椎动脊椎动物为

21、主。物为主。Driesch的海胆胚胎分离发育实验。的海胆胚胎分离发育实验。A,正常长腕幼虫,正常长腕幼虫,B,单个胚胎细胞发育而成的长腕幼虫。,单个胚胎细胞发育而成的长腕幼虫。海胆的调整型海胆的调整型发育过程中也发育过程中也存在镶嵌式发存在镶嵌式发育的成分。育的成分。半个半个8细胞期海胆胚胎的发育。细胞期海胆胚胎的发育。A,沿赤道面将胚胎分,沿赤道面将胚胎分为两半,为两半,B,沿动植物极轴将胚胎分为两半。,沿动植物极轴将胚胎分为两半。海胆受精海胆受精卵的不对卵的不对称性称性海胆海胆64细胞期胚胎各细胞期胚胎各部分细胞的组合发育部分细胞的组合发育(Horstadius, 1939)。)。A,正常

22、发育;,正常发育;B,分,分离的动物半球的发育;离的动物半球的发育;C,动物半球与,动物半球与veg1细细胞的组合发育;胞的组合发育;D,动,动物半球与物半球与veg2细胞的细胞的组合发育;组合发育;E,动物半,动物半球与小卵裂球的组合球与小卵裂球的组合发育。发育。在每一种组合中,都在每一种组合中,都有细胞相互作用而改有细胞相互作用而改变原定的发育命运的变原定的发育命运的现象。现象。一般来说,在多数无脊椎动物胚胎发育过程一般来说,在多数无脊椎动物胚胎发育过程中,主要是细胞自主特化在发生作用,细胞中,主要是细胞自主特化在发生作用,细胞有条件特化次之;而在脊椎动物胚胎发育过有条件特化次之;而在脊椎

23、动物胚胎发育过程中则相反,主要是细胞有条件特化在发生程中则相反,主要是细胞有条件特化在发生作用,细胞自主特化次之。作用,细胞自主特化次之。Cell fate determinationInduction: a signal from one group of cells influences the development of an adjacent group of cells; 细胞间的细胞间的诱导作用使得细胞之间互不相同。诱导作用使得细胞之间互不相同。Permissive induction: a cell makes only one kind of response to a si

24、gnal at a given level.Instructive induction: the cell respond differently to different concentrations of the signal. 细胞间的相互诱导细胞间的相互诱导来自外部的信号使一群来自外部的信号使一群细胞中的一个或更多的细胞中的一个或更多的成员进入不同的发育成员进入不同的发育途径。途径。细胞被导入新的发育途径细胞被导入新的发育途径诱导作用可使细胞互为不同诱导作用可使细胞互为不同扩散性扩散性信号分子信号分子跨膜蛋白的跨膜蛋白的直接互作直接互作间隙连接间隙连接信号传导特点信号传导特点l 传递距

25、离有限传递距离有限l 并非所有细胞都能对并非所有细胞都能对某种信号发生反应。某种信号发生反应。l 不同类型细胞可对同不同类型细胞可对同一信号发生不同反应一信号发生不同反应, , e.g., e.g., 乙酰胆碱使心肌乙酰胆碱使心肌收缩频率下降,但促使收缩频率下降,但促使唾液腺分泌唾液。唾液腺分泌唾液。 Signal transduction相邻细胞相互作用决定分化方向相邻细胞相互作用决定分化方向图式建成依赖于细胞对位置信息的译读图式建成依赖于细胞对位置信息的译读每个细胞每个细胞位置信息位置信息:l 获得获得位置值位置值(positional value),这个值决定它的位置,这个值决定它的位置

26、 (两端两端的边界的边界)l 细胞细胞译读译读位置信息位置信息法国国旗模式法国国旗模式细胞如何知道它们的细胞如何知道它们的positional value?由形态发生素梯度产生由形态发生素梯度产生Morphogen: 某种化学物质某种化学物质浓度变化影响到图式形成浓度变化影响到图式形成.The concentration of substance at either end of the gradient must remain different from each other but constant, thus fixing boundaryFrench flag modelSingle

27、 gradient当信号分子从一个源当信号分子从一个源头向外扩散时,往往头向外扩散时,往往形成一个信号的浓度形成一个信号的浓度梯度,使得距源头远梯度,使得距源头远近不同的细胞根据自近不同的细胞根据自己周围信号分子的阈己周围信号分子的阈浓度,表现出各种不浓度,表现出各种不同的行为。同的行为。 形态发生素梯度形态发生素梯度Morphogen (诱导相邻细胞发育的信号分子诱导相邻细胞发育的信号分子,可可扩散的蛋白质扩散的蛋白质,转录因子转录因子) 常在轴一端合成常在轴一端合成,扩扩散散,细胞沿轴受到不同的细胞沿轴受到不同的Morphogen的浓度的浓度,从而在不同浓度下诱导不同基因表达图。分泌从而在

28、不同浓度下诱导不同基因表达图。分泌成形素的一组特殊细胞称为组织者成形素的一组特殊细胞称为组织者(organizer)。 形态发生素梯度形态发生素梯度Morphogenetic gradient: 某些因子沿体轴的分布呈某些因子沿体轴的分布呈现一个浓度梯度现一个浓度梯度,这些因子在每一局部的水平决定着这些因子在每一局部的水平决定着这一区域的命运或反应。这一区域的命运或反应。Gene and Development母体基因母体基因间隙基因间隙基因成对基因成对基因体节极体节极性基因性基因同源异同源异形基因形基因母体基因沿胚的前后轴形成浓度梯度,决定了胚的前后位置和头尾区域;控母体基因沿胚的前后轴形成

29、浓度梯度,决定了胚的前后位置和头尾区域;控制其它基因的表达:制其它基因的表达:Bicoid: the first morphogenPositional information is translated into the activation and repression of target genesResponses to morphogen gradients: activation / repression of target genes; cell proliferation and growth; morphogenetic movementsDifferent targets

30、have different affinities for effectors位置信息可以产生无数位置信息可以产生无数的模式的模式旁侧抑制产生间隔模式旁侧抑制产生间隔模式Lateral inhibition: mechanism that gives rise to spacing; the differentiating cells secret inhibitory molecule. E.g. a birds skinLateral inhibition give a spacing pattern相邻细胞的旁侧抑制使已分化的细胞阻止临近细相邻细胞的旁侧抑制使已分化的细胞阻止临近细胞朝相

31、同方向分化胞朝相同方向分化, ,可避免器官重复发育。可避免器官重复发育。分化细胞分化细胞发出更多发出更多抑制信号抑制信号周围细胞周围细胞分化受到分化受到抑制抑制Cell fate determination Embryonic development: 程序是逐步产生程序是逐步产生(generative), 不是不是预先完整描述好的预先完整描述好的. It is more like the instructions for making a structure by paper folding than a blueprint. 多种途径保障发育的可靠性多种途径保障发育的可靠性: :如双腿保持

32、同样的长度如双腿保持同样的长度 Redundancy(冗余冗余): when there are two or more ways of carrying out a particular process; if one fails for any reason another will still function. Negative feedback: the end product of a process inhibits an earlier stage and thus keeps the levels of product constant. The complexity of

33、the network of gene activity: robust and relative insensitive to small change发育命运图发育命运图对每一个卵裂球进行标记,通过追踪不同卵对每一个卵裂球进行标记,通过追踪不同卵裂球的发育过程,可在囊胚表面划定不同的裂球的发育过程,可在囊胚表面划定不同的区域,显示每一区域细胞的发育趋向,这样区域,显示每一区域细胞的发育趋向,这样的分区图称为发育命运图(的分区图称为发育命运图(fate map)。)。Fate mapsEarly gastrula, 10 hrBlastopore forms at predicted pos

34、itionFertilized eggs, marked with nile blue dye32 cellblastulaLate gastrulaCells injected at 32 cell stage with fluorescent dextrans, as lineage tracers爪蟾早期胚胎发育命运图的确定。荧光标记的爪蟾早期胚胎发育命运图的确定。荧光标记的C3裂球在尾芽裂球在尾芽期胚胎中形成一侧的中胚层细胞。期胚胎中形成一侧的中胚层细胞。爪蟾晚期囊胚的发育爪蟾晚期囊胚的发育命运图命运图上:侧面观,外胚层上:侧面观,外胚层形成上皮和神经系统,形成上皮和神经系统,沿着背腹

35、轴的带状区沿着背腹轴的带状区域为中胚层,由它形域为中胚层,由它形成脊索、体节、心脏、成脊索、体节、心脏、肾和血液。爪蟾中胚肾和血液。爪蟾中胚层表面还覆盖有一薄层表面还覆盖有一薄层外胚层。层外胚层。下:囊胚背面观下:囊胚背面观命运图命运图并不是表示早期胚胎中各区域的细并不是表示早期胚胎中各区域的细胞发育命运已经确定了,它在很大程度上胞发育命运已经确定了,它在很大程度上反映的是胚胎在继续发育过程各区域细胞反映的是胚胎在继续发育过程各区域细胞的运动趋势,并不是细胞的分化情况。的运动趋势,并不是细胞的分化情况。特化图特化图(specification map)却可以在一)却可以在一定程度上反映出细胞的

36、分化情况。特化图定程度上反映出细胞的分化情况。特化图是将囊胚切成小块,每小块分别在简单培是将囊胚切成小块,每小块分别在简单培养基中培养,观察它们形成哪一种组织。养基中培养,观察它们形成哪一种组织。特化图与命运图之间有很大程度的相似性,特化图与命运图之间有很大程度的相似性,但在外胚层和中胚层存在很大的差别。但在外胚层和中胚层存在很大的差别。爪蟾晚期爪蟾晚期囊胚的特囊胚的特化图化图外胚层区外胚层区细胞还没细胞还没有分化为有分化为预定神经预定神经细胞,中细胞,中胚层区细胚层区细胞还没有胞还没有分化为预分化为预定肌肉细定肌肉细胞。胞。爪蟾囊胚命运图和特化图的比较。脊索的命运图和特化爪蟾囊胚命运图和特化

37、图的比较。脊索的命运图和特化图基本相当,其他中胚层区的特化还没有发生,来自图基本相当,其他中胚层区的特化还没有发生,来自Spemman组织者以及腹方的信号将发挥作用。组织者以及腹方的信号将发挥作用。鸡胚的早期鸡胚的早期胚盘,示后胚盘,示后缘区。缘区。鸡胚的绝大部鸡胚的绝大部分由后缘区分由后缘区(posterior marginal zone)发育而)发育而来。在早期胚来。在早期胚盘中所占的比盘中所占的比例很小,命运例很小,命运图的绘制非常图的绘制非常困难。困难。鸡胚原条完鸡胚原条完全形成时的全形成时的命运图。命运图。只有在原条形只有在原条形成以后,其命成以后,其命运图才显得较运图才显得较为明确

38、。为明确。小鼠晚期原肠胚小鼠晚期原肠胚的命运图(背面的命运图(背面观),原条已经观),原条已经完全形成。完全形成。斑马鱼早期斑马鱼早期原肠胚的命原肠胚的命运图。运图。植物半球为不植物半球为不分裂的卵黄细分裂的卵黄细胞,其上为胚胞,其上为胚盘,盘,3 3个胚层个胚层来源于该胚盘。来源于该胚盘。此时部分内胚此时部分内胚层细胞已迁入层细胞已迁入胚胎内。胚胎内。l 不同脊椎动物命运图中各胚层所在区域及原肠运动时细胞内不同脊椎动物命运图中各胚层所在区域及原肠运动时细胞内移位点具有很强的相似性,主要差别在于不同的卵子卵黄含量移位点具有很强的相似性,主要差别在于不同的卵子卵黄含量不一样,而使得卵裂的类型和胚

39、胎的形状彼此不同。不一样,而使得卵裂的类型和胚胎的形状彼此不同。l 命运图的相似性意味着不同动物可能有相同的细胞分化机制。命运图的相似性意味着不同动物可能有相同的细胞分化机制。当然命运图不能反映出早期胚胎细胞的全部潜能,此时脊椎动当然命运图不能反映出早期胚胎细胞的全部潜能,此时脊椎动物的胚胎仍然有很强的发育调整能力。物的胚胎仍然有很强的发育调整能力。Summaryl 发育是逐步进行的,细胞命运也是在不同时间决定:发育是逐步进行的,细胞命运也是在不同时间决定:早期胚胎细胞的发育潜能通常不局限在正常的命运,但早期胚胎细胞的发育潜能通常不局限在正常的命运,但随着发育的进行,细胞的命运愈来愈精确地特化

40、。随着发育的进行,细胞的命运愈来愈精确地特化。l 组织或细胞间信号的诱导作用是细胞命运改变和指组织或细胞间信号的诱导作用是细胞命运改变和指导发育进行的主要方式之一。不对称细胞分离时,细胞导发育进行的主要方式之一。不对称细胞分离时,细胞质组分不均等分布到子细胞中,也可造成细胞的差别。质组分不均等分布到子细胞中,也可造成细胞的差别。位置信息是常见的一种模式产生的方法,细胞根据与边位置信息是常见的一种模式产生的方法,细胞根据与边界的距离获得位置阈值,然后细胞通过不同的行为对位界的距离获得位置阈值,然后细胞通过不同的行为对位置阈值进行译读。置阈值进行译读。 Summaryl 发育发育信号更多的是选择性的而非指导性的,细胞可以信号更多的是选择性的而非指导性的,细胞可以选择同时存在几条发育通路。选择同时存在几条发育通路。l 胚胎的发育程序是逐步产生的,而非描述性的,这个胚胎的发育程序是逐步产生的,而非描述性的,这个过程就像折纸一样,一步一步折成某种结构,而不是按过程就像折纸一样,一步一步折成某种结构,而不是按照蓝图一蹴而就的。冗余和负反馈等许多机制都参与使照蓝图一蹴而就的。冗余和负反馈等许多机制都参与使发育过程变得非常稳定。发育过程变得非常稳定。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 研究生课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号