2MSAminitab详细实例解读

上传人:re****.1 文档编号:567382923 上传时间:2024-07-20 格式:PPT 页数:72 大小:5.88MB
返回 下载 相关 举报
2MSAminitab详细实例解读_第1页
第1页 / 共72页
2MSAminitab详细实例解读_第2页
第2页 / 共72页
2MSAminitab详细实例解读_第3页
第3页 / 共72页
2MSAminitab详细实例解读_第4页
第4页 / 共72页
2MSAminitab详细实例解读_第5页
第5页 / 共72页
点击查看更多>>
资源描述

《2MSAminitab详细实例解读》由会员分享,可在线阅读,更多相关《2MSAminitab详细实例解读(72页珍藏版)》请在金锄头文库上搜索。

1、M-测量系统分析案例:测量系统分析案例:连续型案例:连续型案例: gageaiag.Mtw 背景:3名测定者对10部品反复2次TEST12测量值随测量值随OP的变动的变动测量值随部品的变动测量值随部品的变动对于部品对于部品10,OP有较大分歧;有较大分歧;所有点落在管理界限内所有点落在管理界限内良好良好大部分点落在管理界限外大部分点落在管理界限外主变动原因:部品变动主变动原因:部品变动良好良好3M-测量系统分析:测量系统分析:离散型案例离散型案例(名目型)(名目型):gage名目.Mtw背景:3名测定者对30部品反复2次TEST4检查者1需要再教育;检查者3需要追加训练;(反复性)两数据不能相

2、差较大,否则说明检查者一致的判定与标准有一定差异个人与标准的一致性(再现性?)5M-测量系统分析:测量系统分析:离散型案例离散型案例(顺序型):(顺序型):散文散文.Mtw背景:3名测定者对30部品反复2次TEST6张四 需要再教育;张一、张五需要追加训练;(反复性)两数据不能相差较大,否则说明检查者一致的判定与标准有一定差异7M-正态性测定正态性测定: (测定工序能力的前提测定工序能力的前提)案例:案例:背景:3名测定者对10部品反复2次TESTP-value 0.05 正态分布(P越大越好)本例:P 0.022 ,数据不服从正态分布。原因:1、Data分层混杂; 2、群间变动大;8M-工序

3、能力分析(连续型):工序能力分析(连续型):案例:案例:Camshaft.MTW 工程能力统计:工程能力统计:9短期短期工序能力工序能力长期长期工序能力工序能力X平均目标值平均目标值 CpCpmX平均平均目标值目标值 Cp Cpm10 求解求解Zst(输入历史均值)(输入历史均值):历史均值:表示强行将它拉到中心位置不考虑偏移 Zst (Bench) 11 求解求解Zlt(无历史均值)(无历史均值):无历史均值: 考虑偏移 Zlt (Bench) * Zshift Zlt (Bench) Zlt (Bench) 12.131.820.31 12工序能力分析:工序能力分析:案例:案例:Camsh

4、aft.MTW另:另:capability sixpack工具工具1314M-工序能力分析(离散型):工序能力分析(离散型):案例:案例:bpcapa.MTW(1):二项分布的:二项分布的Zst15缺陷率:不良率是否受样本大小影响?平均(预想)PPM226427Zlt0.75ZstZlt1.52.2516M-工序能力分析(离散型):工序能力分析(离散型):案例:案例:bpcapa.MTW(2):Poisson分布的分布的Zst1718AGraph(坐标图):(坐标图):案例:案例:Pulse.MTW(1) Histograpm(直方图)单变量(直方图)单变量通过形态确认:正规分布有无;异常点有

5、无;(2) Plot(散点图)(散点图)X、Y双变量双变量通过形态确认:相关关系;确认严重脱离倾向的点;19(3)Matrix Plot(行列散点图矩阵图)多变量(行列散点图矩阵图)多变量(4)Box Plot(行列散点图矩阵图)多变量(行列散点图矩阵图)多变量20(5)Multi-vari Chart(多变因图多变因图)Sinter.MTW目的:掌握多X因子变化对Y的影响(大概); 材料和时间 存在交互作用;21(5)Multi-vari Chart(多变因图多变因图)Sinter.MTW目的:掌握多X因子变化对Y的影响();倾斜越大,主效果越大无交互效果 平行;有交互效果 交叉;22(5)

6、Multi-vari Chart(多变因图多变因图)Sinter.MTW目的:掌握多X因子变化对Y的影响(交互作用细节);材料、交互的P 有意;23A假设测定决定标本大小:假设测定决定标本大小:(1):1-sample Z(已知(已知u)背景:HaN(30,100/25) H0 N(25,100/n )为测定分布差异的标本大小 有意水平 = 0.05 查出力 1 = 0.8差值:u0ua 2530-5功效值(查出力): 1 0.8标准差:sigma1024A假设测定决定标本大小:假设测定决定标本大小:(2):1-sample T(未知(未知u)背景:HaN(30,100/25) H0 N(25

7、,100/n )为测定分布差异的标本大小 有意水平 = 0.05 查出力 1 = 0.8差值:u0ua 2530-5功效值(查出力): 1 0.8标准差(推定值)标准差(推定值):sigma10样本数量27 已知u的1-sample Z的样本数量t 分布假定母标准偏差未制定分析;25A假设测定决定标本大小:假设测定决定标本大小:(3):1 Proportion(单样本)(单样本)背景:H0:P 0.9 Ha:P 0.9 测定数据P10.8 、 P20.9 有意水平 = 0.05 查出力 1 = 0.9P1=0.8功效值(查出力): 1 0.9P2=0.9母比率0.8 实际上是否0.9以下,需要

8、样本102个26A假设测定决定标本大小:假设测定决定标本大小:(3):2 Proportion(单样本)(单样本)背景:H0:P1P2 Ha:P1 P2 有意水平 = 0.05 查出力 1 = 0.9P的备择值:实际要测定的比例? 母比率;功效值(查出力): 1 0.9假设P:H0的P值(0.9)母比率0.8 实际上是否小于0.9,需要样本217个27A假设测定:假设测定:案例:案例:Camshaft.MTW(1): 1-sample t(单样本)(单样本)背景:对零件尺寸测定100次,数据能否说明与目标值(600)一致( = 0.05 )P-Value 0.05 Ho(信赖区间内目标值存在)

9、可以说平均值为60028A假设测定:假设测定:案例:案例:2sample-t.MTW(2): 2-sample t(单样本)(单样本)背景:判断两个母集团Data的平均, 统计上是否相等(有差异)步骤:分别测定2组data是否正规分布; :测定分散的同质性; :ttest; 正态性验证:正态性验证:P-Value 0.05 正态分布P-Value 0.05 正态分布29 等分散测定:等分散测定: P-Value 0.05 等分散对Data的Box-plot标准偏差的信赖区间测定方法选择:Ftest:正态分布时;Levenses test:非正态分布时;30 测定平均值:测定平均值: P-Val

10、ue 0.05 Hau1 u231A假设测定:假设测定:案例:案例:Paired t.MTW(3): Paired t(两集团从属(两集团从属/对应)对应) 背景:老化实验前后样本复原时间; 10样本前后实验数据,判断老化实验前后复原时间是否有差异; (正态分布;等分散; = 0.05 )P-Value 0.05 Hau1 u2(有差异)32A假设测定:假设测定:(4): 1 proportion t(离散单样本)(离散单样本) 背景:为确认某不良P是否为1,检查1000样本,检出13不良, 能否说P=1%? ( = 0.05 )P-Value 0.05 H0 P=0.0133A假设测定:假设

11、测定:(4): 2 proportion t(离散单样本)(离散单样本) 背景:为确认两台设备不良率是否相等, A: 检查1000样本,检出14不良, B: 检查1200样本,检出13不良, 能否说P1=P2? ( = 0.05 )P-Value 0.05 HoP1 = P234A假设测定:假设测定: Chi-Square-1.MTW(5): Chi-Square t(离散单样本)(离散单样本)背景:确认4个不同条件下,某不良是否有差异?P-Value 0.05 HoP1 = P2(无差异)应用一:应用一: 测定频度数的同质性:测定频度数的同质性: H0: P1=P2=Pn Ha: 至少一个不

12、等;至少一个不等;35A假设测定:假设测定: Chi-Square-2.MTW(5): Chi-Square t(离散单样本)(离散单样本)背景:确认班次别和不同类型不良率是否相关?P-Value 0.05 Ha 两因素从属(相关)应用二:应用二: 测定边数的独立性:测定边数的独立性: H0: 独立的(无相关)独立的(无相关) Ha: 从属的(有相关);从属的(有相关);班次班次不良类型不良类型36AANOVA(分散分析):(分散分析): 两个以上母集团的平均是否相等;两个以上母集团的平均是否相等;(1): One-way A(一因子多水平数)(一因子多水平数)背景:确认三根弹簧弹力比较?H0

13、: u1=u2=unHa: 至少一个不等;至少一个不等;P-Value u无有意差;1和2可以说无有意差,1和3有有意差;37AANOVA(分散分析):(分散分析): 两个以上母集团的平均是否相等;两个以上母集团的平均是否相等;(1): Two-way A(2因子多水平数)因子多水平数)背景:确认生产线(因子1)、改善(因子2)影响下,测定值母平均是否相等,主效果和交互效果是否有意?生产线:P-Value 0.05 H0 u相等,无差异;生产线:信赖区间没有都重叠 u有差别对结果有影响改 善:信赖区间重叠 u无差别对结果没有影响38A(相关分析):(相关分析): Scores.MTWP-Val

14、ue 确认哪个因子影响收率,利用2(5-1)配置法输入data:表示2 5-1 部分配置的清晰度和部分实施程度.46 曲线分析曲线分析:-B、D、E有意;-BD、DE有交互作用;-在A=10,B=2,C=120,D=180,E=3时,Y95最佳;47 统计性分析统计性分析:实施t-test,判断有意因子 B、D、E、BD、DE有意通过分散分析,判断1次效果、2次效果的有意性 - 主效果和交互作用效果都有意。48I 最大倾斜法:最大倾斜法:一次试验一次试验 (1) 因子配置设计因子配置设计:背景: 反应值 : 收率(Yield) 时间35min,温度155时,Y80 因 子 : 时间(30 ,

15、40) 温度(150,160) 确认哪个因子影响收率,利用中心点包括的22配置法在中心点实验的次数!49一次试验一次试验 (2)统计性分析统计性分析:实施对因子效果的 t-test, 判断有意的因子。 A, B 有意;通过分散分析判断1次效果、交互作用及曲率效果的有意性。 - 1次效果(Main Effect) 有意; - 弯曲不有意,故而没有曲率效果。 50一次试验一次试验 (3)确认最大倾斜方向确认最大倾斜方向: 线性变换的因子的水准还原为实际水准值。- 实际水平 : A ( 30,40) ,B(150,160) 为还原实际水平值, 线性变换的 值各各乘5. 利用追定的回归系数,决定最大倾

16、斜方向()()最大倾斜方向:A每增加1时,B增加0.42 的方向。StepCoded LevelUncoded Level试验结果(收率)ABAB中心点003515580.44 10.4252.181.08 110.4240157.182.90 220.8445159.283.14 331.2650161.383.70 441.6855163.484.33 552.1060165.587.80 662.5265167.688.65 772.9470169.792.40 883.3675171.893.54 993.7880173.994.78101010104.204.208585176.01

17、76.095.3095.3011114.6290178.194.2112125.0495180.292.51Step由实验者配置,Step10时Y取最大值,适用因子配置;51二次试验二次试验 (1) 因子配置设计因子配置设计:背景:通过最大倾斜法求Y最大化的因子水平,通过追加实验,确认是否最佳水准的领域; 收率(Yield) 时间(80 , 90) 温度(171,181) 确认哪个因子影响收率,利用中心点包括的22配置法52二次试验二次试验 (2)统计性分析统计性分析: 对因子效果t-test,判断与Y有意因子- A, B 有意 -CtPt P64%,可以信赖回归模型; 通过分散分析,判断1、

18、2次效果的有意性- 1次效果、2次效果有意 通过Lack-of-Fit Test,判断模型的 适合性 - 失拟 0.05 (不有意), 因此判断模型适合55(3) 残差分析残差分析:对残差的正态分布假说的研讨 直方图、正态分布图对分散同质假说的研讨与拟合值 残差已确定为随机分布,可以进行分散同质假说研讨 56(3) 坐标图分析坐标图分析:因子的最佳条件最佳条件 - - A A: 289 310: 289 310 - B: 11 18 - B: 11 18 预想预想Y=Y=79.5.79.5.57(4) 数值性分析数值性分析:最佳化因子水平初期设定(大概值)望大:求最大值;下限:设定最小值望目:

19、设定目标值Y = 79.5,满足度= 1。 即意味着满足目标值要求;调整因数水平而使透过率更好。A=299.50、B=14.90时,Y(Max)79.616358I 反映表面实验反映表面实验2: 多个反映值多个反映值(1) 因子配置设计因子配置设计: 试验配置试验配置 : 中心合成计划(2因子) - 反应值(Y) : Y1、Y2、Y3 - 因数/水平: A (Low = 80, High = 90), B (Low = 170, High = 180)背景:通过最大倾斜法,知道反应时间A= 85分钟、反应温度B=175F是最佳条件。 求可以满足3个反应变量(Y1、Y2、Y3)结果条件的因子的最

20、佳水准。输入试验结果:A、B:选中后右键选择数据格式转换成整数59(2)统计性分析统计性分析: 误差项要不要误差项要不要 Pooling?误差项Pooling的话 Lack of fit(失拟) 的 P-value要大起来, R-sq(adj)要升高 ,或者Regression(回归)的 F值要升高 不然的话,证明现在的模型更适当2个因子的主效果、2次效果都有意,不实施Pooling. 交互作用,Pooling到误差项时,R-sq(adj)和lack of fit的P值会减少,因此不Pooling.60A 的2次效果(A*A)不有意,故而Pooling到误差项.交互作用(A*B),Poolin

21、g到误差项时, R-sq(adj)和lack of fit的P值会减少因此不Pooling.Pooling 后分析结果后分析结果在项中去掉A*A项后再次运行61Pooling 后分析结果后分析结果在项中去掉A*A、A*B项后再次运行A、B的2次效果(AA,BB)不有意,Pooling到误差项.AB交互作用,Pooling到误差项时,R-sq(adj)和lack of fit的 P值会减少因此不Pooling.62(3) 坐标图分析坐标图分析:位于Plot的中央部的白色部分是A和B因子满足所有反应变量的水平值的范围。Y1、Y2、Y3的取值范围;63(4) 数值性分析数值性分析:调整因子的水准,接

22、近收率(Yield)= 78.5以上、粘性Viscosity)=65.已修订的因子水准值64C 管理图:管理图:(1) Xbar-R (n=10)66(3) P 管理图(离散,样本大小不一定)管理图(离散,样本大小不一定)67(3) P 管理图(离散,样本大小不一定)管理图(离散,样本大小不一定)按月、按值班组、改善前(6月)、按改善前后等按层区别在一个坐标图上区分标注。如图可见,6月散步大,7、8月明显减少;68(3) nP 管理图(离散,样本大小一定)管理图(离散,样本大小一定)69(5) C 管理图(离散,不良数)管理图(离散,不良数)70(5) U 管理图(离散,不良数,组大小不定)管理图(离散,不良数,组大小不定)7172

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号