动力学建模方法与解法总结

上传人:新** 文档编号:565046300 上传时间:2024-01-06 格式:DOCX 页数:14 大小:373.75KB
返回 下载 相关 举报
动力学建模方法与解法总结_第1页
第1页 / 共14页
动力学建模方法与解法总结_第2页
第2页 / 共14页
动力学建模方法与解法总结_第3页
第3页 / 共14页
动力学建模方法与解法总结_第4页
第4页 / 共14页
动力学建模方法与解法总结_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《动力学建模方法与解法总结》由会员分享,可在线阅读,更多相关《动力学建模方法与解法总结(14页珍藏版)》请在金锄头文库上搜索。

1、目 录1 刚体系统12 弹性系统动力学63 高速旋转体动力学101 刚体系统 一般力学研究的对象,是由两个或两个以上刚体通过铰链等约束联系在一起的力学系统,为一般力学研究对象。自行车、万向支架陀螺仪通常可看成多刚体系统。人体在某种意义上也可简化为一个多刚体系统。现代航天器、机器人、人体和仿生学中关于动物运动规律的研究都提出了多刚体系统的一系列理论模型作为研究对象。多刚体系统按其内部联系的拓扑结构,分为树型和非树型(包含有闭链);按其同外界的联系情况,则有有根和无根之别。利用图论的工具可以一般地分析多刚体系统的构造,建立系统的数学模型和动力学方程组。也可从分析力学中的高斯原理出发,用求极值的优化

2、算法直接求解系统的运动和铰链反力。依照多刚体系统动力学的理论和方法,广泛采用电子计算机对这些模型进行研究,对于精确地掌握这些对象的运动规律是很有价值的。 1.1 自由物体的变分运动方程任意一个刚体构件,质量为,对质心的极转动惯量为,设作用于刚体的所有外力向质心简化后得到外力矢量和力矩,若定义刚体连体坐标系的原点位于刚体质心,则可根据牛顿定理导出该刚体带质心坐标的变分运动方程: (1-1)其中,为固定于刚体质心的连体坐标系原点的代数矢量,为连体坐标系相对于全局坐标系的转角,与分别为与的变分。定义广义坐标: (1-2)广义: (1-3)及质量矩阵: (1-4)体坐标系原点固定于刚体质心时用广义力表

3、示的刚体变分运动方程: (1-5)1.2 束多体系统的运动方程考虑由个构件组成的机械系统,对每个构件运用式(1-5),组合后可得到系统的变分运动方程为: (1-6)若组合所有构件的广义坐标矢量、质量矩阵及广义力矢量,构造系统的广义坐标矢量、质量矩阵及广义力矢量为: (1-7) (1-8) (1-9)系统的变分运动方程则可紧凑地写为: (1-10)对于单个构件,运动方程中的广义力同时包含作用力和约束力,但在一个系统中,若只考虑理想运动副约束,根据牛顿第三定律,可知作用在系统所有构件上的约束力总虚功为零,若将作用于系统的广义外力表示为: (1-11)其中:, (1-12)则理想约束情况下的系统变分

4、运动方程为: (1-13)式中虚位移与作用在系统上的约束是一致的。系统运动学约束和驱动约束的组合如式(1-10),为: (1-14)对其微分得到其变分形式为: (1-15)式(1-13)和(1-15)组成受约束的机械系统的变分运动方程。为导出约束机械系统变分运动方程易于应用的形式,运用拉格朗日乘子定理对式(1-13)和(1-15)进行处理。拉格朗日乘子定理:设矢量,矢量,矩阵为常数矩阵,如果有: (1-16)对于所有满足式(1-84)的条件都成立。 (1-17)则存在满足式(1-85)的拉格朗日乘子矢量。 (1-18)其中为任意的。在式(1-13)和(1-15)中,运用拉格朗日乘子定理于式(1

5、-13)和(1-15),则存在拉格朗日乘子矢量,对于任意的应满足: (1-19)由此得到运动方程的拉格朗日乘子形式: (1-20)式(1-20)还必须满足式(1-10)、(1-12)和(1-14)表示的位置约束方程、速度约束方程及加速度约束方程,如下: (1-21), (1-22), (1-23)以上三式其维数同式(1-14)。式(1-20)、(1-21)、(1-22)和(1-23)组成约束机械系统的完整的运动方程。将式(1-20)与(1-23)联立表示为矩阵形式: (1-24)式(1-24)即为多体系统动力学中最重要的动力学运动方程,式(1-24)还必须满足式(1-22)和(1-23)。它是

6、一个微分代数方程组,不同于单纯的常微分方程组问题,其求解关键在于避免积分过程中的违约现象,此外,还要注意DAE问题的刚性问题。如果系统质量矩阵是正定的,并且约束独立,那么运动方程就有唯一解。实际中的系统质量矩阵通常是正定的,只要保证约束是独立的,运动方程就会有解。在实际数值迭代求解过程中,需要给定初始条件,包括位置初始条件和速度初始条件。此时,如果要使运动方程有解,还需要满足初值相容条件,也就是要使位置初始条件满足位置约束方程,速度初始条件满足速度约束方程。对于由式(1-24)及(1-21)、(1-22)确定的系统动力学方程,初值相容条件为: (1-25) (1-26)1.3 正向动力学分析、

7、逆向动力学分析与静平衡分析对于一个确定的约束多体系统,其动力学分析不同于运动学分析,并不需要系统约束方程的维数等于系统广义坐标的维数,。在给定外力的作用下,从初始的位置和速度,求解满足位置约束式(1-22)及速度约束式(1-23)的运动方程式(1-24),就可得到系统的加速度和相应的速度、位置响应,以及代表约束反力的拉格朗日乘子,这种已知外力求运动及约束反力的动力学分析,称为正向动力学分析。如果约束多体系统约束方程的维数与系统广义坐标的维数相等,也就是对系统施加与系统自由度相等的驱动约束,那么该系统在运动学上就被完全确定,由节的约束方程、速度方程和加速度方程可求解系统运动。在此情况下,雅可比矩

8、阵是非奇异方阵,即: (1-27)展开式(1-24)的运动方程,为: (1-28) (1-29)由式(1-29)可解得,再由式(1-28)可求得,拉格朗日乘子就唯一地确定了作用在系统上的约束力和力矩(主要存在于运动副中)。这种由确定的运动求系统约束反力的动力学分析就是逆向动力学分析。如果一个系统在外力作用下保持静止状态,也就是说,如果: (1-30)那么,就说该系统处于平衡状态。将式(1-30)代入运动方程式(1-20),得到平衡方程: (1-31)由平衡方程式(1-21)及约束方程式(1-13)可求出状态和拉格朗日乘子。这种求系统的平衡状态及在平衡状态下的约束反力的动力学分析称为(静)平衡分

9、析。1.4 约束反力对于约束机械系统中的构件,设其与系统中某构件存在运动学约束或驱动约束,约束编号为。除连体坐标系外,再在构件上以某点为原点建立一个新的固定于构件上的坐标系,称为运动副坐标系,设从坐标系到坐标系的变换矩阵为,从坐标系到坐标系的变换矩阵为,则可导出由约束产生的反作用力和力矩分别为: (1-32) (1-33)以上两式中,为约束对应的拉格朗日乘子,反作用力和力矩均为运动副坐标系中的量。2 弹性系统动力学由于工业机器人、机械手、弹性联动装置、带柔性附件人造卫星、直升飞机的旋翼等工程结构发展的需求, 使运动中的弹性结构的动力学分析得到了很大的进展。运动弹性体的动力学分析属于多体系统动力

10、学的范畴。而导出其有限元格式的动力学方程并研究其数值解法则是计算多体系统动力学的任务。由于弹性变形与刚体运动的耦合导致了运动弹性体的动力学方程为时变的或非线性的,因此运动中的弹性体会出现诸多非线性效应。运动中弹性体的动力分析问题可分为两类, 其一是具有给定刚体运动的弹性体的动力分析,这类问题仅讨论弹性体的刚体运动对其弹性变形的影响,比如机械手的弹性终端杆的振动分析一般可归于此类。第二类问题是多体系统中之刚体运动与其中的弹性体的弹性变形的相互耦合的动力分析, 在这类问题中, 弹性体的变形会受到系统刚体运动的影响, 反之弹性体的变形也会影响系统的刚体运动。下面采用运动参考系方法并用Jourdain

11、 动力学普遍方程导出了具有空间一般运动的弹性体之通用的有限元动力学方程,其最大的优点在于推导简单并适用于各类结构及各种单元形式。对系统的动力学方程的数值求解, 一般可以采用直接积分法。下面给出了对时变的运动弹性的动力学方程的Neumann 级数2直接积分解法, 该方法可以在保证计算精度的前提下很大程度地节省机时。图2-1图2-1 所示为一运动的弹性体,选用两个坐标系来定义弹性体的刚体运动与弹性变形:静系, 简记系; 原点在上的点, 固连于上的动系,简记为系。的刚体移动由点对于点的矢量,定义的空间转动则用系对系的转动来定义, 而内任意点的弹性变形则用在系内的弹性变形位移矢量来表示。由图可见发生弹

12、性变形后, 其上任意一点对系的位置矢量可以表示为: (2-1)而 (2-2)其中是未产生弹性变形时点在系中的位置矢量,则表示点的弹性变形位移矢量。把(2-2) 式代入(2-1) 式并向系投影, 且采用矩阵形式表示为: (2-3)其中和分别表示和向 系的投影列阵;表示系向系转移的方向余弦矩阵。把(3-3) 式中的用有限元的格式,表达为: (2-4)其中为单元形函数矩阵,为点所在单元的有限元结点位移列阵。把(2-4) 式代入(2-3)式, 并利用公式: (2-5)其中 是系相对于系转动角速度在系上投影的斜对称阵。由(2-3) 式对时间分别求一次导数和二次导数可得点的速度和加速度,进而可得到点的虚速

13、度,于是点邻域之微元体的Jourdain 动力学普遍方程可以写作: (2-6)其中: 为弹性体在点的质量密度;是作用于点微元体上的全部力在系上的投影。对于可利用常规有限元的格式将它写作: (2-7)其中: 和分别为单元刚度阵和单元阻力阵在点的值; 为作用在点微元体上的外力在系的列阵, 把求得的点的虚速度和加速度以及(2-7) 式代入(2-6) 式, 并考虑到中诸元素之独立性, 可得点微元体的动力学方程为: (2-8)将(2-8) 式对单元积分便可得运动的弹性体的单元动力学方程: (2-9)式中:其中,分别是常规有限元法中的单元阻力阵、刚度阵和外力向量, 而,则分别是由于刚体运动与弹性变形的耦合而产生的附加单元动力阻尼阵、动力刚度阵和动力力向量。而且由于它们的表达式中含有表示弹性体空间运动量和, 因此,通常这些动力附加项是时变的。当弹性体的刚体运动速度特别是转动速度较大时, 弹性体受到较大的惯性力作用, 会产生变形的耦合效应。例如转动的梁, 由

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库 > 总结/计划/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号