电力拖动课程设计

上传人:cn****1 文档编号:564997459 上传时间:2022-07-24 格式:DOC 页数:27 大小:696.50KB
返回 下载 相关 举报
电力拖动课程设计_第1页
第1页 / 共27页
电力拖动课程设计_第2页
第2页 / 共27页
电力拖动课程设计_第3页
第3页 / 共27页
电力拖动课程设计_第4页
第4页 / 共27页
电力拖动课程设计_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《电力拖动课程设计》由会员分享,可在线阅读,更多相关《电力拖动课程设计(27页珍藏版)》请在金锄头文库上搜索。

1、课程设计任务书学生姓名: 专业班级: 指导教师: 工作单位: 自动化学院 题 目: 脉宽调制双闭环调速系统的设计 初始条件:uN=48V,Ia=3.7A,Nn=2000r/min,电枢电阻Ra=6.5,电枢回路总电阻R=8,电磁时间常数TL=5ms,电源电压为60V。稳态无静差。要求完成的主要任务: (包括课程设计工作量及 其技术要求,以及说明书撰写等具体要求)1. 系统原理图设计;2. 调速系统电路设计;3. 过程分析,参数设计计算和校验;4. 根据开通时间和开关频率计算调速范围。5. 按规范格式撰写设计报告(参考文献不少于5篇)打印时间安排:(10天)6月2日-6月3日查阅资料6月4日-6

2、月7日方案设计6月8日-6月10日馔写程设计报告 6月11日提交报告,答辩指导教师签名: 2014年 6月1日系主任(或责任教师)签名: 年 月 日摘要 变压调速是直流调速系统的主要调速方法,系统的硬件结构至少包含了两个部分:能够调节直流电动机电枢电压的直流电源盒产生被调转速的直流电动机。随着电力电子技术的发展,可控直流电源主要有两大类,第一类是相控整流,它把交流电源直接转换成可控的直流电源;第二类是直流脉宽变换器,它先用不可控整流把交流电变换成直流,然后用PWM脉宽调制方式输出的直流电压。当用可控直流电源盒直流电动机组成一个直流调速系统时,它们所表现出来的性能指标和人们的期望值总是存在差距的

3、,解决此问题的方法是设计具有转速反馈控制的直流调速系统。由于只带有转速反馈的控制系统的控制对象是转速,没有控制电流,该系统需要实施限流保护。此外增加电流反馈 能提高系统的动态和稳态性能指标。关键字:变压调速 转速反馈 电流反馈 目录摘要I1直流调速系统可用的可控直流电源11.1 晶闸管整流器电动机系统11.2 直流PWM变换器电动机系统12 转速电流反馈控制的直流调速系统32.1 转速电流双闭环优点32.2 转速、电流反馈控制直流调速系统的组成32.3 调节器的作用5 2.3.1 转速调节器的作用52.3.1 电流调节器的作用53 直流PWM可逆调速系统63.1 直流PWM传动系统结构图63.

4、2 H桥双极式逆变器的工作原理63.3 PWM调速系统的静特性94 主电路方案和控制系统104.1 PWM变换器的选用114.2 传感器以及测速发电机的选用114.3 驱动电路选用124.4 调节器的选择124.5 脉宽调制器选用135 双闭环调节器的设计145.1 电流环的设计145.2 转速环的设计155.3 转速超调量校验176 电路图和仿真结果186.1 电路图186.2 仿真图18心得体会23参考文献24 / / 1直流调速系统可用的可控直流电源1.1晶闸管整流器电动机系统晶闸管整流器,通过调节触发装置GT的控制电压来移动触发脉冲的相位,改变可控整流器平均输出直流电压,从而实现直流电

5、动机的平滑调速。晶闸管可控整流器的功率放大倍数在以上,门极电流可以直接用电子控制;响应时间是毫秒级,具有快速的控制作用;运行损耗小,效率高;这些优点使V-M系统后的了优越的性能。但晶闸管整流器运行中存在一些问题,主要表现在:1) 晶闸管一般是单向导电元件,不允许电流反向,这给电动机实现可逆运行造成困难;2)对过电压。过电流等十分敏感,只要一超过允许值都可能在很短的时间内损坏元件;3)晶闸管的控制原理决定了只能滞后触发,它对交流电源是一个感性负载,吸取滞后无功功率,因此功率因素很低,如果它在电网中容量大,将造成“电力公害”; 4)晶闸管整流装置的输出电压时脉动的,而且脉动数总是有限的。1.2直流

6、PWM变换器电动机系统自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制的高频开关控制方式,形成了脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,或直流PWM调速系统。和V-M系统相比,直流PWM调速系统在很多方面有较大的优越性:1)PWM调速系统主电路线路简单,需用的功率器件少;2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;3)低速性能好,稳速精度高,调速范围广,可达1:10000左右;4)如果可以和快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因为装置效率高;6)直

7、流电源采用不控整流时,电网功率因数比相控整流器高。由于有上述优点,直流PWM调速系统的应用日益广泛,特别在中、小容量的高动态性能系统中,已经完全取代了该系统。2 转速电流反馈控制的直流调速系统2.1转速电流双闭环优点同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。由于闭环系统的这些优点因此选用闭环系统。单闭环速度反馈调速系统,采用PI控制器时,可以保证系统稳态速度误差为零。但是如果对系统的动态性能要求较高,

8、如果要求快速起制动,突加负载动态速降小等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照要求来控制动态过程的电流或转矩。另外,单闭环调速系统的动态抗干扰性较差,当电网电压波动时,必须待转速发生变化后,调节作用才能产生,因此动态误差较大。在要求较高的调速系统中,一般有两个基本要求:一是能够快速启动制动;二是能够快速克服负载、电网等干扰。通过分析发现,如果要求快速起动,必须使直流电动机在起动过程中输出最大的恒定允许电磁转矩,即最大的恒定允许电枢电流,当电枢电流保持最大允许值时,电动机以恒加速度升速至给定转速,然后电枢电流立即降至负载电流值。如果要求快速克服电网的干扰,必须对电枢电

9、流进行调节。以上两点都涉及电枢电流的控制,所以自然考虑到将电枢电流也作为被控量,组成转速、电流双闭环调速系统。2.2转速、电流反馈控制直流调速系统的组成转速反馈控制直流调速系统用PI调节器实现转速稳态无静差,消除负载转矩扰动对稳态转速的影响,并用电流截止负反馈限制电枢电流的冲击,避免出现过电流现象。但转速单闭环系统并不能充分按照理想要求控制电流(或电磁转矩)的动态过程。对于经常正、反转的调速系统,如龙门刨床、可逆轧钢机等,缩短起、制动过程的时间是提高生产效率的因素。为此,在启动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值。当到达稳态转矩是平衡,从而迅速转入稳态运行。这类理想

10、的启动(制动)过程示和图2-1,启动电流呈矩形波,转矩按线性增长。这是在最大电流(转矩)受限制时调速系统所能获得的最快的启动(制动)过程。(a)带电流截止负反馈的单闭环调速系统起动过程(b)理想快速起动过程图2-1调速系统起动过程的电流和转速波形实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快启动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。问题是,应该在启动过程中只有电流负反馈,没有转速负反馈,在达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作

11、用。怎样才能做到这种既存在转速和电流两种负反馈,又使它们只能分别在不同的阶段里起作用呢?只用一个调节器显然是不可能的,采用转速和电流两个调节器应该能行,问题是在系统中如何连接。为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流。二者之间实行嵌套(或称串级)连接,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上,电流环在里面,称为内环;转速环在外面,称为外环。这就形成了转速、电流反馈控制直流调速系统。为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器。

12、 图2-2 转速、电流反馈控制直流调速系统原理图2.3 调节器的作用 转速调节器和电流调速器在双闭环直流调速系统中的作用可归纳如下:2.3.1转速调节器的作用1)转速调节器是调速系统的主导调节器,它使转速很快地跟随给定电压变化,稳态时可减少转速误差,如果采用PI调节器,则可实现无静差。2)对负载变化器抗扰作用。3)其输出限幅值决定电动机允许的最大电流。2.3.1 电流调节器的作用1)作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随器给定电压的变化。2)对电网电压的波动期及时抗扰的作用。3)在转速动态过程中,保证获得电动机允许的最大电流,从而加快动态过程。4)当电动机过载甚至堵

13、转时,限制电枢电流的最大值,器快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。3 直流PWM可逆调速系统3.1 直流PWM传动系统结构图直流PWM控制系统是直流脉宽调制式调速控制系统的简称,和晶闸管直流调速系统的区别在于用直流PWM变换器取代了晶闸管变流装置,作为系统的功率驱动器,系统构成原理如图1-1所示。其中属于脉宽调制调速系统主要由调制波发生器GM、脉宽调制器UPM、逻辑延时环节DLD和电力晶体管基极的驱动器GD和脉宽调制(PWM)变换器组成,最关键的部件为脉宽调制器。图3-1 直流PWM传动系统结构图 3.2 H桥双极式逆变器的工作原理脉宽调制器的作用是:用脉冲宽度调制的方法,

14、把恒定的直流电源电压调制成频率一定宽度可变的脉冲电压序列,从而平均输出电压的大小,以调节电机转速。可逆PWM变换器主电路有多种形式,最常用的是桥式(亦称H形)电路如图3-2所示。这时电动机M两端电压的极性随开关器件驱动电压的极性变化而变化。图3-2 H形双极式逆变器电路 a.正向电动运行波行b.反向电动运行波形图3-3 H形双极式逆变器的驱动电压电流波形它们的关系是:在一个开关周期内,当晶体管饱和导通而截止,这时在一个周期内正负相间,这是双极式PWM变换器的特征,其电压、电流波形如图3-3所示。电动机的正反转体现在驱动电压正、负脉冲的宽窄上。当正脉冲较宽时,则的平均值为正,电动机正转,当正脉冲较窄时,则反转;如果正负脉冲相等,平均输出电压为零,则电动机停止。双极式控制可逆PWM变换器的输出平均电压为 (3-1)如果定义占空比,电压系数则在双极式可逆变换器中 (3-2)调速时,的可调范围为01相应的。当时,为正,电动机正转;当时,为负,电动机反转;当时,电动机停止。但电动机停止时电枢电压并不等于零,而是正负脉宽相等的交变脉冲电压

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号